DOI QR코드

DOI QR Code

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid

포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산

  • Lee Seungmin (Department of Chemical Engineering, Kyonggi University) ;
  • Kim Jun Seok (Department of Chemical Engineering, Kyonggi University)
  • 이승민 (경기대학교 화학공학과) ;
  • 김준석 (경기대학교 화학공학과)
  • Received : 2023.07.27
  • Accepted : 2023.09.25
  • Published : 2023.11.01

Abstract

Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

푸르푸랄(furfural)은 리그노셀룰로오스 바이오매스(lignocellulose biomass)의 헤미셀룰로오스(hemicellulose) 성분 중 하나인 자일로스(xylose)로부터 생산되는 플랫폼 화학물질이다. 푸르푸랄은 페놀류 화합물이나 바이오 연료 등의 중요한 원료로 사용될 수 있다. 본 연구에서는 푸르푸랄 생산공정에서 일반적으로 사용되는 산 촉매인 황산(sulfuric acid)과 친환경적 촉매인 포름산(formic acid) 두 가지 촉매를 이용하여 회분식 반응 시스템(batch system)에서 자일로스로부터 푸르푸랄을 생산하기 위한 조건을 비교 및 최적화하였다. 자일로스의 초기 농도(10 g/L~100 g/L), 반응 온도(140~200 ℃), 황산 촉매(1~3 wt%), 포름산 촉매(5~10 wt%), 반응 시간에 따라 자일로스로부터 푸르푸랄 수율에 미치는 영향을 조사하였다. 촉매 종류에 따른 최적 조건은 다음과 같았다. 황산 촉매의 경우, 3 wt%의 촉매농도, 50 g/L의 초기 자일로스 농도, 180 ℃의 온도 10분의 반응시간에서 최대 58.97%의 푸르푸랄 수율을 얻었다. 포름산 촉매의 겨우, 5 wt%의 촉매농도, 50 g/L의 초기 자일로스 농도, 180 ℃의 온도, 150분 반응 시간에서 65.32%의 푸르푸랄 수율을 확보하였다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(MTHF 생산을 위한 중간체 생산기술 개발 RS-2022-00156181).

References

  1. Lu, H. X., Yang, W. Y., Shi, Y. X., Wang, H. B., Mao, H., Sang, L. and Zhao, Z. P., "Fast and Continuous Conversion of Xylose to Furfural in Micropacked Bed Reactors," Chemical Engineering Science, 266, 118256(2023). 
  2. Yan, K., Wu, G., Lafleur, T. and Jarvis, C., "Production, Properties and Catalytic Hydrogenation of Furfural to Fuel Additives and Value-added Chemicals," Renewable and Sustainable Energy Reviews, 38, 663-676(2014).  https://doi.org/10.1016/j.rser.2014.07.003
  3. Yemis, O. and Mazza, G., "Acid-catalyzed Conversion of Xylose, Xylan and Straw Into Furfural by Microwave-assisted Reaction," Bioresource Technology, 102(15), 7371-7378(2011).  https://doi.org/10.1016/j.biortech.2011.04.050
  4. Machado, G., Leon, S., Santos, F., Lourega, R., Dullius, J., Mollmann, M. E. and Eichler, P., "Literature Review on Furfural Production From Lignocellulosic Biomass," Natural Resources, 7(3), 115-129(2011).  https://doi.org/10.4236/nr.2016.73012
  5. Adhami, W., Richel, A. and Len, C., "A Review of Recent Advances in the Production of Furfural in Batch System," Molecular Catalysis, 545, 113178(2023). 
  6. Modelska, M., Binczarski, M. J., Dziugan, P., Nowak, S., Romanowska-Duda, Z., Sadowski, A. and Witonska, I. A., "Potential of Waste Biomass From the Sugar Industry as a Source of Furfural and Its Derivatives for Use as Fuel Additives in Poland," Energies, 13(24), 6684(2020). 
  7. Liu, Y., Ma, C., Huang, C., Fu, Y. and Chang, J., "Efficient Conversion of Xylose Into Furfural Using Sulfonic Acid-functionalized Metal-organic Frameworks in a Biphasic System," Industrial & Engineering Chemistry Research, 57(49), 16628-16634(2018).  https://doi.org/10.1021/acs.iecr.8b04070
  8. Jin, S., Hao, Z., Zhang, K., Yan, Z. and Chen, J., "Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization," Angewandte Chemie, 133(38), 20795-20816(2021).  https://doi.org/10.1002/ange.202101818
  9. Vogt, C. and Weckhuysen, B. M., "The Concept of Active Site in Heterogeneous Catalysis," Nature Reviews Chemistry, 6(2), 89-111(2022).  https://doi.org/10.1038/s41570-021-00340-y
  10. Hu, S. L., Cheng, H., Xu, R. Y., Huang, J. S., Zhang, P. J. and Qin, J. N., "Conversion of Xylose Into Furfural Over Cr/Mg Hydrotalcite Catalysts," Molecular Catalysis, 538, 113009(2023). 
  11. Yang, W., Li, P., Bo, D. and Chang, H., "The Optimization of Formic Acid Hydrolysis of Xylose in Furfural Production," Carbohydrate Research, 357, 53-61(2012).  https://doi.org/10.1016/j.carres.2012.05.020
  12. Suxia, R., Haiyan, X., Jinling, Z., Shunqing, L., Xiaofeng, H. and Tingzhou, L., "Furfural Production From Rice Husk Using Sulfuric Acid and a Solid Acid Catalyst Through a Two-stage Rocess," Carbohydrate Research, 359, 1-6(2012).  https://doi.org/10.1016/j.carres.2012.07.006
  13. Tongtummachat, T., Jaree, A. and Akkarawatkhoosith, N., "Continuous Hydrothermal Furfural Production From Xylose in a Microreactor with Dual-acid Catalysts," RSC Advances, 12(36), 23366-23378(2022).  https://doi.org/10.1039/D2RA03609F
  14. Zhang, X., Xu, S., Li, Q., Zhou, G. and Xia, H., "Recent Advances in the Conversion of Furfural Into Bio-chemicals Through Chemo-and Bio-catalysis," RSC Advances, 11(43), 27042-27058(2021).  https://doi.org/10.1039/D1RA04633K
  15. Xu, S., Yang, J., Li, J. and Shen, F., "Highly Efficient Oxidation of Biomass Xylose to Formic Acid with CeO x-Promoted MnOx Catalyst in Water," ACS Sustainable Chemistry & Engineering(2023). 
  16. Almhofer, L., Bischof, R. H., Madera, M. and Paulik, C., "Kinetic and Mechanistic Aspects of Furfural Degradation in Biorefineries," The Canadian Journal of Chemical Engineering, 101(4), 2033-2049(2023).  https://doi.org/10.1002/cjce.24593
  17. Yang, W., Li, P., Bo, D., Chang, H., Wang, X. and Zhu, T., "Optimization of Furfural Production From D-xylose with Formic Acid as Catalyst in a Reactive Extraction System," Bioresource Technology, 133, 361-369(2013).  https://doi.org/10.1016/j.biortech.2013.01.127
  18. de Carvalho, R. S., de A. Rodrigues, F., Monteiro, R. S. and da Silva Faria, W. L., "Optimization of Furfural Synthesis From Xylose Using Niobic Acid and Niobium Phosphate as Catalysts," Waste and Biomass Valorization, 10, 2673-2680(2019).  https://doi.org/10.1007/s12649-018-0272-3
  19. Kochermann, J., Schreiber, J. and Klemm, M., "Conversion of D-xylose and Hemicellulose in Water/ethanol Mixtures," ACS Sustainable Chemistry & Engineering, 7(14), 12323-12330(2019). 
  20. Choudhary, V., Sandler, S. I. and Vlachos, D. G., "Conversion of Xylose to Furfural Using Lewis and Bronsted Acid Catalysts in Aqueous Media," Acs Catalysis, 2(9), 2022-2028(2012).  https://doi.org/10.1021/cs300265d
  21. Lee, S. M., Han, S. and Kim, J. S., "Levulinic Acid Production from Lignocellulosic Biomass by co-solvent Pretreatment with NaOH/THF," Korean Chemical Engineering Research, 61(2), 265-272(2023).  https://doi.org/10.9713/KCER.2023.61.2.265
  22. Yang, T., Li, W., Su, M., Liu, Y. and Liu, M., "Production of Furfural From Xylose Catalyzed by a Novel Calcium Gluconate Derived Carbon Solid Acid in 1,4-dioxane," New Journal of Chemistry, 44(19), 7968-7975(2020).  https://doi.org/10.1039/D0NJ00619J
  23. Han, S., Lee, S. M. and Kim, J. S., "Kinetic Study of Glucose Conversion to 5-hydroxymethylfurfural and Levulinic Acid Catalyzed by Sulfuric Acid," Korean Chemical Engineering Research, 60(2), 193-201(2022) https://doi.org/10.9713/KCER.2022.60.2.193