Browse > Article
http://dx.doi.org/10.7853/kjvs.2022.45.4.305

Prevalence of Bordetella bronchiseptica, Mycoplasma felis, and Chlamydia felis using a newly developed triplex real-time polymerase chain reaction assay in Korean cat population  

Hye-Ryung, Kim (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University)
Gyu-Tae, Jeon (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University)
Jong-Min, Kim (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University)
Ji-Su, Baek (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University)
Yeun-Kyung, Shin (Foreign Animal Disease Division, Animal and Plant Quarantine Agency)
Oh-Kyu, Kwon (Foreign Animal Disease Division, Animal and Plant Quarantine Agency)
Hae-Eun, Kang (Foreign Animal Disease Division, Animal and Plant Quarantine Agency)
Ho-Seong, Cho (College of Veterinary Medicine, Jeonbuk National University)
Doo-Sung, Cheon (Postbio Inc.)
Choi-Kyu, Park (College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University)
Publication Information
Korean Journal of Veterinary Service / v.45, no.4, 2022 , pp. 305-316 More about this Journal
Abstract
Bordetella (B.) bronchiseptica, Mycoplasma (M.) felis, and Chlamydia (C.) felis are considered as main bacterial pathogens of feline upper respiratory tract disease (URTD). In this study, a new triplex quantitative real-time polymerase chain reaction (tqPCR) assay was developed for the rapid and differential detection of these bacteria in a single reaction. The assay specifically amplified three bacterial genes with the detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 1%. Based on the diagnostic results of the assay using 94 clinical samples obtained from cats with URTD signs, prevalence of B. bronchiseptica, M. felis, or C. felis was 10.6%, 36.2%, or 6.4%, respectively, indicating that the diagnostic sensitivity was comparable to those of previously reported monoplex qPCR assays. The dual infection rates for B. bronchiseptica and M. felis or M. felis and C. felis was 2.1% or 3.2%, respectively. These results indicated that M. felis has been widely spread, and its co-infection with B. bronchiseptica or M. felis has been frequently occurred in Korean cat population. The developed tqPCR assay will serve as a promising tool for etiological and epidemiological studies of these three bacterial pathogens and the prevalence data obtained in this study will contribute to expanding knowledge about the epidemiology of feline URTD in Korea.
Keywords
Triplex real-time PCR; Cats; Bordetella bronchiseptica; Mycoplasma felis; Chlamydia felis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Fernandez M, Manzanilla EG, Lloret A, Leon M, Thibault JC. 2017. Prevalence of feline herpesvirus-1, feline calicivirus, Chlamydophila felis and Mycoplasma felis DNA and associated risk factors in cats in Spain with upper respiratory tract disease, conjunctivitis and/or gingivostomatitis. J Feline Med Surg 19: 461-469.   DOI
2 Gruffydd-Jones T, Addie D, Belak S, Boucraut-Baralon C, Egberink H, Frymus T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. 2009. Chlamydophila felis infection. ABCD guidelines on prevention and management. J Feline Med Surg 11: 605-609.   DOI
3 Helps C, Reeves N, Egan K, Howard P, Harbour D. 2003. Detection of Chlamydophila felis and feline herpesvirus by multiplex real-time PCR analysis. J Clin Microbiol 41: 2734-2736.   DOI
4 Helps CR, Lait P, Damhuis A, Bjornehammar U, Bolta D, Brovida C, Chabanne L, Egberink H, Ferrand G, Fontbonne A, Pennisi MG, Gruffydd-Jones T, Gunn-Moore D, Hartmann K, Lutz H, Malandain E, Mostl K, Stengel C, Harbour DA, Graat EA. 2005. Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, Chlamydophila felis and Bordetella bronchiseptica in cats: experience from 218 European catteries. Vet Rec 156: 669-673.   DOI
5 Kang BT, Park HM. 2008. Prevalence of feline herpesvirus 1, feline calicivirus and Chlamydophila felis in clinically normal cats at a Korean animal shelter. J Vet Sci 9: 207-209.   DOI
6 Kim HR, Park J, Park JH, Kim JM, Baek KS, Kim DY, Lyoo YS, Park CK. 2022. Development of a realtime polymerase chain reaction assay for reliable detection of a novel porcine circovirus 4 with an endogenous internal positive control. Korean J Vet Serv 45: 1-11.   DOI
7 Kwiecien R, Kopp-Schneider A, Blettner M. 2011. Concordance analysis: part 16 of a series on evaluation of scientific publications. Dtsch Arztebl Int 108: 515-521.
8 Le Boedec K. 2017. A systematic review and metaanalysis of the association between Mycoplasma spp and upper and lower respiratory tract disease in cats. J Am Vet Med Assoc 250: 397-407.   DOI
9 Lee-Fowler T. 2014. Feline respiratory disease: what is the role of Mycoplasma species? J Feline Med Surg 16: 563-571.   DOI
10 Lee MJ, Park JH. 2022. Prevalence study of respiratory pathogens in Korean cats using real-time polymerase chain reaction. Korean J Vet Serv 45: 145-153.   DOI
11 Lion A, Secula A, Rancon C, Boulesteix O, Pinard A, Deslis A, Hagglund S, Salem E, Cassard H, Naslund K, Gaudino M, Moreno A, Brocchi E, Delverdier M, Zohari S, Baranowski E, Valarcher JF, Ducatez MF, Meyer G. 2021. Enhanced pathogenesis caused by influenza D virus and mycoplasma bovis coinfection in calves: a disease severity linked with overexpression of IFN-γ as a key player of the enhanced innate immune response in lungs. Microbiol Spectr 9: e0169021.
12 Litster A, Wu CC, Leutenegger CM. 2015. Detection of feline upper respiratory tract disease pathogens using a commercially available real-time PCR test. Vet J 206: 149-153.   DOI
13 Lobova D, Kleinova V, Konvalinova J, Cerna P, Molinkova D. 2019. Laboratory diagnostics of selected feline respiratory pathogens and their prevalence in the Czech Republic. Veterinarni Medicina 64: 25-32.   DOI
14 Nguyen D, Barrs VR, Kelman M, Ward MP. 2019. Feline upper respiratory tract infection and disease in Australia. J Feline Med Surg 21: 973-978.   DOI
15 Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611-622.   DOI
16 Baker JA. 1944. A virus causing pneumonia in cat and producing elementary bodies. J Exp Med 79: 159-172.   DOI
17 Beauchamp DJ, da Costa RC, Premanandan C, Burns CG, Cui J, Daniels JB. 2011. Mycoplasma felis-associated meningoencephalomyelitis in a cat. J Feline Med Surg 13: 139-143.   DOI
18 Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens N, Morisset D. 2014. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol 37: 115-126.   DOI
19 Cai Y, Fukushi H, Koyasu S, Kuroda E, Yamaguchi T, Hirai K. 2002. An etiological investigation of domestic cats with conjunctivitis and upper respiratory tract disease in Japan. J Vet Med Sci 64: 215-219.   DOI
20 Cao N, Tang Z, Zhang X, Li W, Li B, Tian Y, Xu D. 2022. Development and application of a triplex TaqMan quantitative real-time PCR assay for simultaneous detection of feline calicivirus, feline parvovirus, and feline herpesvirus 1. Front Vet Sci 8: 792322.
21 Chalker VJ, Owen WM, Paterson CJ, Brownlie J. 2004. Development of a polymerase chain reaction for the detection of Mycoplasma felis in domestic cats. Vet Microbiol 100: 77-82.   DOI
22 Cohn LA. 2011. Feline respiratory disease complex. Vet Clin North Am Small Anim Pract 41:1273-1289.   DOI
23 Sachse K, Borel N. 2020. Recent Advances in Epidemiology, Pathology and Immunology of Veterinary Chlamydiae, 403-428. In: Ming T, Johannes HH, Christine S(ed.) Chlamydia biology: From genome to disease. Caister Academic Press, Poole, UK.
24 Dean R, Harley R, Helps C, Caney S, Gruffydd-Jones T. 2005. Use of quantitative real-time PCR to monitor the response of Chlamydophila felis infection to doxycycline treatment. J Clin Microbiol 43: 1858-1864.   DOI
25 Di Martino B, Di Francesco CE, Meridiani I, Marsilio F. 2007. Etiological investigation of multiple respiratory infections in cats. New Microbiol 30: 455-461.
26 Pantchev A, Sting R, Bauerfeind R, Tyczka J, Sachse K. 2010. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using speciesspecific real-time PCR assays. Comp Immunol Microbiol Infect Dis 33: 473-484.   DOI
27 Soderlund R, Bolske G, Holst BS, Aspan A. 2011. Development and evaluation of a real-time polymerase chain reaction method for the detection of Mycoplasma felis. J Vet Diagn Invest 23: 890-893.   DOI
28 Tizolova A, Brun D, Guiso N, Guillot S. 2014. Development of real-time PCR assay for differential detection of Bordetella bronchiseptica and Bordetella parapertussis. Diagn Microbiol Infect Dis 78: 347-351.   DOI
29 Egberink H, Addie D, Belak S, Boucraut-Baralon C, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. 2009. Bordetella bronchiseptica infection in cats. ABCD guidelines on prevention and management. J Feline Med Surg 11: 610-614.   DOI
30 Everett KD, Hornung LJ, Andersen AA. 1999. Rapid detection of the Chlamydiaceae and other families in the order Chlamydiales: three PCR tests. J Clin Microbiol 37: 575-580.   DOI