• Title/Summary/Keyword: rational method

Search Result 1,213, Processing Time 0.031 seconds

Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance (고속 Ro-Pax선형의 조파저항성능 향상을 위한 최적 선형설계에 관한 연구)

  • Park, Dong-Woo;Choi, Hee-Jong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.787-793
    • /
    • 2012
  • A hull form design technique to enhance the wave-making resistance performance for a medium size high speed Ro-Pax ship was studied introducing an optimization method and an automatic hull form modification method. SQP(sequential quadratic programming) was applied as the optimization algorithm and the geometry of hull surface was represented and modified using the NURBS(Non-Uniform Rational B-Spline). The wave-making resistance performance as an objective function in the optimization procedure was evaluated using the Rankine source panel method in which nonlinearity of the free surface boundary conditions and the trim and sinkage of the ship was fully taken into account. Using the Ro-Pax ship as a base hull, the hull-form optimization method was applied to obtain the hull shape that produced the lower wave-making resistance. To verify the validity of the hull-form optimization method, the numerical results was compared with the model test results.

Approximate Method of Multi-Layer Green's Function Using FDTD Scheme and Rational Function Approximation (FDTD 방법과 분수 함수 근사법을 이용한 다층 구조에서의 Green 함수 근사화)

  • Kim, Yong-June;Koh, Il-Suek;Lee, Yong-Shik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.191-198
    • /
    • 2011
  • In this paper, a method to approximate a multi-layer Green's function is proposed based on a FDTD scheme and a rational function approximation. For a given horizontal propagation wavenumber, time domain response is calculated and then Fourier transformed to the spectral domain Green's function. Using the rational function approximation, the pole and residue of the Green's function can be estimated, which are crucial for a calculation of a path loss. The proposed method can provide a wideband Green's function, while the conventional normal mode method can be applied to a single frequency problem. To validate the proposed method, We consider two problems, one of which has a analytical solution. The other is about multi-layer case, for which the proposed method is compared with the known normal mode solution, Kraken.

The algebraic completion of the rational numbers based on ATD (ATD에 근거한 유리수의 대수학적 completion에 관한 연구)

  • Kim, Boo-Yoon;Chung, Gyeong-Mee
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.135-148
    • /
    • 2011
  • We can say that the history of mathematics is the history on the development of the number system. The number starts from Natural number and is constructed to Integer number and Rational number. The Rational number is not the complete number analytically so that Real number is completed by the idea of the nested interval method. Real number is completed analytically, however, is not by algebra, so the algebraically completed type of the rational number, through the way that similar to the process of completing real number, is Complex number. The purpose of this study is to show the most appropriate way for the development of the human being thinking about the teaching and leaning of Complex number. To do this, We have to consider the proof of the existence of Complex number, the background of the introduction of Complex number and the background knowledge that the teachers to teach Complex number should have. Also, this study analyzes the knowledge to be taught of Complex number based on the anthropological theory of didactics and finally presents the teaching method of Complex number based on this theory.

Rational approximation of multiple input delay systems (복수입력 시간지연 시스템의 유리근사화)

  • HWANG, I Cheol;PARK, Kyoung Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.194-204
    • /
    • 1997
  • In this paper, we consider the rational approximation of multiple input delay systems. The method of computing Hankel singular values and vectors is firstly introduced, where explicitly shows the structure of the corresponding Hankel singular vectors. Secondly, rational approximants are obtained from output nor- mal relizations, which are constructed by Hankel singular values and vectors. As a result, it is shown that rational approximants by output normal realization preserve intrinsic properties of time delay systems than Pad'e approximants.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

Dispersion tolerant transmission of the return-to-zero signal with alternate-phase generated from a rational harmonic mode-locked ring laser (유리수차 조화 모드잠김 광섬유 링레이저로부터 발생된 교차 위상 RZ(return-to-zero) 신호의 분산 제어 전송)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Kim, Baek-Hyun;Baek, Jong-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.203-204
    • /
    • 2006
  • We present and demonstrate a novel method of alternate-phase return-to-zero (RZ) signal generation and pulse-amplitude equalization simultaneously in a rational harmonic mode-locked fiber ring laser, using a dual-drive Mach-Zehnder (MZ) modulator. By adjusting the voltages applied to both arms of the modulator, the rational harmonic mode-locked pulse trains are equalized in their amplitudes. In addition to that, the amplitude-equalized pulse trains multiplying the repetition rate at ${\sim}10\;GHz$ have alternate $\pi$ phase difference between adjacent pulses. The alternate-phase RZ signal generated by the proposed method enhances transmission performance through the single-mode fiber (SMF) links without dispersion compensation.

  • PDF

A Study on the Techniques of Grid Control for Numerical Grid Generation (격자 조절기법에 관한 연구)

  • Yoon Yong Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84-87
    • /
    • 2002
  • When computing the flow around complex three dimensional configurations, the generation of grid is the sunt time consuming part of any calculation. The object of this study is to develop the grid duster techniques capable of resolving complex flows with shock waves, expansion waves, shear layers, and cursive shapes, The Dot insert method of Non-Uniform Rational B-Splines is described as a id control method.

  • PDF

A Study on understanding of infinite decimal (무한소수에 대한 학생들의 이해)

  • Park, Dal-Won
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.237-246
    • /
    • 2007
  • According to 7-th curriculum, irrational number should be introduced using non-repeating infinite decimals. A rational number is defined by a number determined by the ratio of some integer p to some non-zero integer q in 7-th grade. In 8-th grade, A number is rational number if and only if it can be expressed as finite decimal or repeating decimal. A irrational number is defined by non-repeating infinite decimal in 9-th grade. There are misconceptions about a non-repeating infinite decimal. Although 1.4532954$\cdots$ is neither a rational number nor a irrational number, many high school students determine 1.4532954$\cdots$ is a irrational number and 0.101001001$\cdots$ is a rational number. The cause of misconceptions is the definition of a irrational number defined by non-repeating infinite decimals. It is a cause of misconception about a irrational number that a irrational number is defined by a non-repeating infinite decimals and the method of using symbol dots in infinite decimal is not defined in text books.

  • PDF

On Explaining Rational Numbers for Extending the Number system to Real Numbers (실수로의 수 체계 확장을 위한 유리수의 재해석에 대하여)

  • Shin, Bo-Mi
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.285-298
    • /
    • 2008
  • According to the 7th curriculum, irrational numbers should be introduced using infinite decimals in 9th grade. To do so, the relation between rational numbers and decimals should be explained in 8th grade. Preceding studies remarked that middle school students could understand the relation between rational numbers and decimals through the division appropriately. From the point of view with the arithmetic handling activity, I analyzed that the integers and terminating decimals was explained as decimals with repeating 0s or 9s. And, I reviewed the equivalent relations between irrational numbers and non-repeating decimals, rational numbers and repeating decimals. Furthermore, I suggested an alternative method of introducing irrational numbers.

  • PDF