• Title/Summary/Keyword: ratio theory

Search Result 1,854, Processing Time 0.023 seconds

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

An Empirical Analysis on Trade-off Theory and Pecking Order Theory for Medical Institutions's Capital Structure (의료기관 자본구조에 대한 상충관계이론과 자본조달 순위이론 실증분석)

  • Kim, Jai-Myung;Ham, U-Sang
    • Health Policy and Management
    • /
    • v.16 no.4
    • /
    • pp.24-47
    • /
    • 2006
  • Based on the findings of a study focused on medical institutions(Fama & French, 2002), this study determined possible causality between determinants of capital structure and liability level, while estimating targeted debt ratio. Moreover, it also examined hypotheses about the adjustment of targeted debt ratio and the of fundraising patterns, so that it verified the relative priority of trade-off theory and pecking order theory. First, profitability had positive(+) relationships with liability level, while investment opportunities had negative(-) relationships with liability level. This finding supported pecking order theory, and non-liability tax shield effects had negative(-) relationships with liability level as estimated in both trade-off theory and pecking order theory. Next, this study verified trade-off and pecking order theory at once by means of regression analysis about the variation of liability level in associations with disparity from targeted debt ratio and short-term fluctuation of profit and investment. As a result, it was noted that liability level became mean-reversed to targeted liability ratio but slowly, SO it was difficult to assert that such mean reverse may support trade-off theory. However, the finding that most of short-term fluctuations of profit and investment are absorbed into liabilities supported pecking order theory. On the other hand, it was found that the larger scale of medical institutions is more supportive of pecking order theory in the associations between liability level and profitability and the fundraising patterns than trade-off theory.

A Research on Pecking Order Theory of Financing: The Case of Korean Manufacturing Firms

  • Lee, Jang-Woo;Hurr, Hee-Young
    • International Journal of Contents
    • /
    • v.5 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • This paper empirically tests pecking order theory. Korean listed firms are used as the samples. On the whole we find supportive results for pecking order theory. The fixed effect model on the whole period shows that as pecking order theory suggests that debt ratio decreases as cash flow. ROA, physical assets, and firm size increase. Again, it is shown that corporate debt ratio significantly decreases as cash flow or ROA increases in every sub-sample, which coincides with the prediction of pecking order theory. Corporate debt ratio significantly decreases as physical assets or jinn size increases in case of the whole sample, pre-financial crisis period, and the sub-samples by q-ratio, which also supports the prediction of pecking order theory. Statistical significance of the coefficients of physical assets or firm size completely disappears after Korean financial crisis. Perhaps it is because the role of physical assets or firm size as a mitigator of information asymmetry significantly weakens after the financial crisis as Korean financial market becomes more transparent. For small firms only size variable is negatively and significantly related with debt to assets. It seems that size is an important factor for smaller firms in making financing decision.

On thermal stability of plates with functionally graded coefficient of thermal expansion

  • Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.313-335
    • /
    • 2016
  • In this article, a four-variable refined plate theory is presented for buckling analysis of functionally graded plates subjected to uniform, linear and non-linear temperature rises across the thickness direction. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. Young's modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate. However, the coefficient of thermal expansion of the FGM plate varies according to a power law form through the thickness coordinate. Equilibrium and stability equations are derived based on the present theory. The influences of many plate parameters on buckling temperature difference such ratio of thermal expansion, aspect ratio, side-to-thickness ratio and gradient index will be investigated.

양력선 이론을 이용한 EDISON CFD 해석자의 검증

  • Kim, Tae-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.101-105
    • /
    • 2016
  • Prandtl's Lifting-line theory is the classical theory of calculating aerodynamic properties. Though it is classical method, it predicts the aerodynamic properties well. By lifting-line theory, high aspect ratio is critical factor to decrease induced drag. And 'elliptic-similar' wing also makes the minimum induced drag. But due to the problem of manufacturing, tapered wing is preferred and have been utilized. In this Paper, by using Edison CFD, verifying the classical lifting-line theory. To consider induced drag only, using Euler equation as governing equation instead of full Navier-Stokes equation. Refer to the theory, optimum taper ratio which makes the minimum induced drag is 0.3. Utilizing the CFD results, plotting oswald factor over various taper ratio and investigating whether the consequences are valid or not. As a result, solving Euler equation by EDISON CFD cannot guarantee the theoretical values because it is hard to set the proper grid to solve. Results are divided into two cases. One is the values are decreased gradually and another seems to following tendency, but values are all negative number.

  • PDF

An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates

  • Bellifa, Hichem;Bakora, Ahmed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • In this article, an efficient and simple refined theory is proposed for buckling analysis of functionally graded plates by using a new displacement field which includes undetermined integral variables. This theory contains only four unknowns, with is even less than the first shear deformation theory (FSDT). Governing equations are obtained from the principle of virtual works. The closed-form solutions of rectangular plates are determined. Comparison studies are carried out to check the validity of obtained results. The influences of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are examined and discussed.

Shear strength prediction of high strength steel reinforced reactive powder concrete beams

  • Qi-Zhi Jin;Da-Bo He;Xia Cao;Feng Fu;Yi-Cong Chen;Meng Zhang;Yi-Cheng Ren
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.75-92
    • /
    • 2024
  • High Strength steel reinforced Reactive Powder Concrete (RPC) Beam is a new type of beams which has evident advantages than the conventional concrete beams. However, there is limited research on the shear bearing capacity of high-strength steel reinforced RPC structures, and there is a lack of theoretical support for structural design. In order to promote the application of high-strength steel reinforced RPC structures in engineering, it is necessary to select a shear model and derive applicable calculation methods. By considering the shear span ratio, steel fiber volume ratio, longitudinal reinforcement ratio, stirrup ratio, section shape, horizontal web reinforcement ratio, stirrup configuration angle and other variables in the shear test of 32 high-strength steel reinforced RPC beams, the applicability of three theoretical methods to the shear bearing capacity of high-strength steel reinforced RPC beams was explored. The plasticity theory adopts the RPC200 biaxial failure criterion, establishes an equilibrium equation based on the principle of virtual work, and derives the calculation formula for the shear bearing capacity of high-strength steel reinforced RPC beams; Based on the Strut and Tie Theory, considering the softening phenomenon of RPC, a failure criterion is established, and the balance equation and deformation coordination condition of the combined force are combined to derive the calculation formula for the shear bearing capacity of high-strength reinforced RPC beams; Based on the Rankine theory and Rankine failure criterion, taking into account the influence of size effects, a calculation formula for the shear bearing capacity of high-strength reinforced RPC beams is derived. Experimental data is used for verification, and the results are in good agreement with a small coefficient of variation.

Shear locking-free earthquake analysis of thick and thin plates using Mindlin's theory

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.373-385
    • /
    • 2009
  • The purpose of this paper is to study shear locking-free parametric earthquake analysis of thick and thin plates using Mindlin's theory, to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick and thin plates subjected to earthquake excitations. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the earthquake analysis of thick and thin plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

Simple Method of Analysis of Simply Supported Reinforced Concrete Slab (단순지지된 철근콘크리트 슬래브의 간편한 해석방법)

  • 한봉구;임희수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.392-401
    • /
    • 2002
  • The results of analysis of simply supported reinforced concrete slab by special orthotropic plate theory have been reported. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis of such a plate by means of the beam theory with unit width is reported. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. The plate aspect ratio considered is from 1 : 1 to 1 :6

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory

  • Zenkour, Ashraf M.;Hafed, Zahra S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.