Browse > Article
http://dx.doi.org/10.12989/aas.2020.7.2.115

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory  

Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
Hafed, Zahra S. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
Publication Information
Advances in aircraft and spacecraft science / v.7, no.2, 2020 , pp. 115-134 More about this Journal
Abstract
This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.
Keywords
FG plate; piezoelectric; bending; two-variable shear plate theory; Navier's method;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", Int. J. Mech. Sci., 46, 411-31. https://doi.org/10.1016/j.ijmecsci.2004.03.011.   DOI
2 Mantari, J.L. and Guedes Soares, C. (2012), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct., 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.   DOI
3 Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012a), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. B Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017.   DOI
4 Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012b), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.   DOI
5 Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012c), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.   DOI
6 Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87, 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002.   DOI
7 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates", ASME J. Appl. Mech., 18, 31-38.   DOI
8 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.   DOI
9 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. B Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.   DOI
10 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013) "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. B Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.   DOI
11 Reddy, J.N. (2011), "A general nonlinear third-order theory of functionally graded plates", Int. J. Aerosp. Lightweight Struct., 1(1), 1-21. http://dx.doi.org/10.3850/S201042861100002X.   DOI
12 Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056.   DOI
13 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-52. https://doi.org/10.1115/1.3167719.   DOI
14 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3C663::AID-NME787%3E3.0.CO;2-8.   DOI
15 Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys., 23, 184-191. https://doi.org/10.1002/sapm1944231184.   DOI
16 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
17 Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.   DOI
18 Tu, T.M., Quoc, T.H. and Long, N.V. (2017), "Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311.   DOI
19 Zenkour, A.M. (2004), "Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory", Acta Mech., 171(3-4), 171-187. https://doi.org/10.1007/s00707-004-0145-7.   DOI
20 Arefi, M. and Zenkour, A.M. (2016a), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magnet-thermo-electric environment", J. Sandw. Struct. Mater., 18, 624-651. https://doi.org/10.1177%2F1099636216652581.   DOI
21 Arefi, M. and Zenkour, A.M. (2016b), "Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets", Smart. Mater. Struct., 25, 115040. https://doi.org/10.1088/0964-1726/25/11/115040.   DOI
22 Arefi, M. and Zenkour, A.M. (2017a), "Nonlocal electro-thermo mechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta. Mech., 228, 475-493. https://doi.org/10.1007/s00707-016-1716-0.   DOI
23 Arefi, M. and Zenkour, A.M. (2017b), "Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face sheets", Compos. Struct., 159, 479-90. https://doi.org/10.1016/j.compstruct.2016.09.088.   DOI
24 Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.   DOI
25 Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solids Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.   DOI
26 Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.   DOI
27 Zenkour, A.M. (2005c), "On vibration of functionally graded plates according to a refined trigonometric plate theory", Int. J. Struct. Stab. Dyn., 5(2), 279-297. https://doi.org/10.1142/S0219455405001581.   DOI
28 Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech., 77(4), 197-214. https://doi.org/10.1007/s00419-006-0084-y.   DOI
29 Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026.   DOI
30 Zenkour, A.M. (2013a), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Model., 37(20-21), 9041-9051. https://doi.org/10.1016/j.apm.2013.04.022.   DOI
31 Zenkour, A.M. (2013b), "Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory", J. Sandw. Struct. Mater., 15(6), 629-656. https://doi.org/10.1177%2F1099636213498886.   DOI
32 Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490.   DOI
33 Arefi, M. and Zenkour, A.M. (2017c), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-22. https://doi.org/10.1016/j.compstruct.2016.11.071.   DOI
34 Zenkour, A.M. (2013c), "Bending of FGM plates by a simplified four-unknown shear and normal deformations theory", Int. J. Appl. Mech., 5(2) 1350020, 1-15. https://doi.org/10.1142/S1758825113500208.   DOI
35 Zenkour, A.M. (2015), "Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory", Compos. Struct., 122, 260-270. https://doi.org/10.1016/j.compstruct.2014.11.064.   DOI
36 Zenkour, A.M. and Aljadani, M.H. (2018), "Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory", Adv. Aircraft Spacecraft Sci., 5(6), 615-632. https://doi.org/10.12989/aas.2018.5.6.615.   DOI
37 Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93, 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005.   DOI
38 Benbakhti A., Bouiadjra, M.B., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., 22(5), 975-999. https://doi.org/10.12989/scs.2016.22.5.975.   DOI
39 Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018), "Closed-from solutions for thermal buckling analyses of advanced nanoplates according to a hyperbolic four-variable refined theory with small-scale effects", Acta Mech., 229(5), 2251-2265. https://doi.org/10.1007/s00707-017-2097-8.   DOI
40 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. B Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.   DOI
41 Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solid Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.   DOI
42 Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. B Eng., 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031.   DOI
43 Gurses, M., Civalek, O., Korkmaz, A. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first order shear deformation theory", Int. J. Numer. Meth. Eng., 79, 290-313. https://doi.org/10.1002/nme.2553.   DOI
44 Ebrahimi, F. and Rastgoo, A. (2008), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 15044. https://doi.org/10.1088/0964-1726/17/1/015044.   DOI
45 Fereidoon, A., Asghardokht, S.M. and Mohyeddin, A. (2011), "Bending analysis of thin functionally graded plates using generalized differential quadrature method", Arch. Appl. Mech., 81, 1523-1539. https://doi.org/10.1007/s00419-010-0499-3.   DOI
46 Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. B Eng., 42(5), 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031.   DOI
47 Ghasemabadian, M.A. and Kadkhodayan, M. (2016), "Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions", Struct. Eng. Mech., 60(2), 271-299. http://doi.org/10.12989/sem.2016.60.2.271.   DOI
48 Giannakopoulos, A.E. and Suresh, S. (1999), "Theory of indentation of piezoelectric materials", Acta Mater., 47, 2153-2164. https://doi.org/10.1016/S1359-6454(99)00076-2.   DOI
49 Jandaghian, A.A. and Rahmani, O. (2017), "Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electro-mechanical loading", J. Intell. Mater. Syst. Struct., 28, 3039-3053. https://doi.org/10.1177%2F1045389X17704920.   DOI
50 Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.   DOI