Browse > Article
http://dx.doi.org/10.12989/sem.2009.33.3.373

Shear locking-free earthquake analysis of thick and thin plates using Mindlin's theory  

Ozdemir, Y.I. (Civil Engineering, Department of Civil Engineering, Karadeniz Technical University)
Ayvaz, Y. (Civil Engineering, Department of Civil Engineering, Karadeniz Technical University)
Publication Information
Structural Engineering and Mechanics / v.33, no.3, 2009 , pp. 373-385 More about this Journal
Abstract
The purpose of this paper is to study shear locking-free parametric earthquake analysis of thick and thin plates using Mindlin's theory, to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick and thin plates subjected to earthquake excitations. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the earthquake analysis of thick and thin plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.
Keywords
shear locking-free parametric earthquake analysis; thick plate; Mindlin's theory; 17-noded finite element; thickness/span ratio; aspect ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ayvaz, Y. (1992), Parametric Analysis of Reinforced Concrete Slabs Subjected to Earthquake Excitation, Ph. D. Thesis, Graduate School of Texas Tech University, Lubbock, Texas
2 Ayvaz, Y. and Durmu , A. (1995), 'Earhquake analysis of simply supported reinforced concrete slabs', J. Sound Vib., 187(3), 531-539   DOI   ScienceOn
3 Ayvaz, Y., Dalo lu, A. and Do angün, A. (1998), 'Application of a modified Vlasov model to earthquake analysis of the plates resting on elastic foundations', J. Sound Vib., 212(3), 499-509   DOI   ScienceOn
4 Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey
5 Belounar, L. and Guenfoud, M. (2005), 'A new rectangular finite element based on the strain approach for plate bending', Thin Wall. Struct., 43(1), 47-63   DOI   ScienceOn
6 Bergan, P.G. and Wang, X. (1984), 'Quadrilateral plate bending elements with shear deformations', Comput. Struct., 19(1-2), 25-34   DOI   ScienceOn
7 Brezzi, F. and Marini, L.D. (2003), 'A nonconforming element for the Reissner-Mindlin plate', Comput. Struct., 81, 515-522   DOI   ScienceOn
8 Cai, L., Rong, T. and Chen, D. (2002), 'Generalized mixed variational methods for reissner plate and its application', Comput. Mech., 30, 29-37   DOI   ScienceOn
9 Caldersmith, G.W. (1984), 'Vibrations of orthotropic rectangular plates', ACUSTICA, 56, 144-152   ScienceOn
10 Cen, S., Long, Y., Yao, Z. and Chiew, S. (2006), 'Application of the quadrilateral area coordinate method', Int. J. Numer. Eng., 66, 1-45   DOI   ScienceOn
11 Cook, R.D., Malkus, D.S. and Michael, E.P. (1989), Concepts and Applications of Finite Element Analysis. John Wiley & Sons, Inc., Canada
12 Grice, R.M. and Pinnington, R.J. (2002), 'Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances', J. Sound Vib., 249(3), 499-527   DOI   ScienceOn
13 Hinton, E. and Huang, H.C. (1986), 'A family of quadrilateral mindlin plate element with substitute shear strain fields', Comput. Struct., 23(3), 409-431   DOI   ScienceOn
14 Hughes, T.J.R., Taylor, R.L. and Kalcjai, W. (1977), 'Simple and efficient element for plate bending', Int. J. Numer. Meth. Eng., 11, 1529-1543   DOI   ScienceOn
15 Leissa, A.W. (1969), Vibration of Plates, NASA, sp. 160
16 Leissa, A.W. (1973), 'The free vibration of rectangular plates', J. Sound Vib., 31(3), 257-294   DOI   ScienceOn
17 Liew, K.M. and Teo, T.M. (1999), 'Three-dimentional vibration analysis of rectangular plates based on differential quadrature method', J. Sound Vib., 22(4), 577-599
18 Lok, T.S. and Cheng, Q.H. (2001), 'Free and forced vibration of simply supported, orthotropic sandwich panel', Comput. Struct., 79(3), 301-312   DOI   ScienceOn
19 Mindlin, R.D. (1951), 'Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates', J. Appl. M., 18, 31-38
20 Morais, M.V.G., Pedroso, L.J. and Da Silva, S.F. (2005), 'Vibrations of thick plates using lagrangean quadrilateral finite element with 16 nodes', Passager de Paris, 1, 238-250
21 Ozkul, T.A. and Ture, U. (2004), 'The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem', Thin Wall. Struct., 42, 1405-1430   DOI   ScienceOn
22 Ozdemir Y.I., Bekiro lu, S. and Ayvaz, Y. (2007), 'Shear locking-free analysis of thick plates using Mindlin's theory', Struct. Eng. Mech., 27(3), 311-331   DOI   ScienceOn
23 Ozdemir, Y.I. (2007), 'Parametric Analysis of Thick Plates Subjected to Earthquake Excitations by Using Mindlin’s Theory', Ph. D. Thesis, Karadeniz Technical University, Trabzon
24 Providakis, C.P. and Beskos, D.E. (1989), 'Free and forced vibrations of plates by boundary elements', Comput. Method. Appl. M., 74, 231-250   DOI   ScienceOn
25 Providakis, C.P. and Beskos, D.E. (1989), 'Free and forced vibrations of plates by boundary and interior elements', Int. J. Numer. Meth. Eng., 28, 1977-1994   DOI
26 Qian, L.F., Batra, R.C. and Chen, L.M. (2003), 'Free and forced vibration of thick rectangular plates using higher-orde shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method', Comp. Model Eng., 4(5), 519-534
27 Qiu, J. and Feng, Z.C. (2000), 'Parameter dependence of the impact dynamics of thin plates', Comput. Struct., 75(5), 491-506   DOI   ScienceOn
28 Raju, K.K. and Hinton, E. (1980), 'Natural frequencies and modes of rhombic Mindlin plates', Earhq. Eng. Struct. D., 8, 55-62   DOI
29 Reissner, E. (1945), 'The effect of transverse shear deformation on the bending of elastic plates', J. Appl. Mech. ASME, 12, A69-A77
30 Reissner, E. (1947), 'On bending of elastic plates', Q. Appl. Math., 5, 55-68   DOI
31 Reissner, E. (1950), 'On a variational theorem in elasticity', J. Math. Phys., 29, 90-95   DOI
32 Sakata, T. and Hosokawa, K. (1988), 'Vibrations of clamped orthotropic rectangular plates', J. Sound Vib., 125(3), 429-439   DOI   ScienceOn
33 Shen, H.S., Yang, J. and Zhang, L. (2001), 'Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundation', J. Sound Vib., 244(2), 299-320   DOI   ScienceOn
34 Si, W.J., Lam, K.Y. and Gang, S.W. (2005), 'Vibration analysis of rectangular plates with one or more guided edges via bicubic B-spline method', Shock Vib., 12(5)   ScienceOn
35 Soh, A.K., Cen, S., Long, Y. and Long, Z. (2001), 'A new twelve DOF quadrilateral element for analysis of thick and thin plates', Eur. J. Mech., A-Solids, 20, 299-326   DOI   ScienceOn
36 Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells. Second edition, McGraw-Hill., New York
37 Tedesco, J.W., McDougal, W.G. and Ross, C.A. (1999), Structural Dynamics, Addison Wesley Longman Inc., California
38 Ugural, A.C. (1981), Stresses in Plates and Shells, McGraw-Hill., New York
39 Wanji, C. and Cheung, Y.K. (2000), 'Refined quadrilateral element based on Mindlin/Reissner plate theory', Int. J. Numer. Meth. Eng., 47, 605-627   DOI   ScienceOn
40 Warburton, G.B. (1954), 'The vibration of rectangular plates', Proc. of the Institude of Mechanical Engineers, 371-384   DOI
41 Weaver, W. and Johnston, P.R. (1984), Finite Elements for Structural Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey
42 Woo, K.S., Hong, C.H., Basu, P.K. and Seo, C.G. (2003), 'Free vibration of skew Mindlin plates by p-version of F.E.M.', J. Sound Vib., 268, 637-656   DOI   ScienceOn
43 Zhu, J. and Gu, P. (1991), 'Dynamic response of orthotropic plate using BEM with approximate fundamental solution', J. Sound Vib., 151(2), 203-211   DOI   ScienceOn
44 Zienkiewich, O.C., Taylor, R.L. and Too, J.M. (1971), 'Reduced integration technique in general analysis of plates and shells', Int. J. Numer. Meth. Eng., 3, 275-290   DOI