• 제목/요약/키워드: ratio of slenderness

검색결과 391건 처리시간 0.026초

전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성 평가 및 시험 (Evaluation and Test of Slenderness Ratio Effect on Buckling Characteristics of Thin Cylindrical Structures Subjecting the Shear Loads)

  • 구경회;김종범;이재한
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.535-543
    • /
    • 2002
  • 본 논문의 목적은 전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성을 보다 깊이 있게 검토하는 것이다. 이를 위하여 J. Okada 등이 제안한 좌굴평가식을 사용하여 세장비에 따른 좌굴강도 평가를 수행하였다. 좌굴강도 평가 결과들로부터 세장비 L/R=3.1, 1.6, 그리고 1.0을 갖는 세가지 좌굴시험체를 결정하고 이에 대한 수치해석과 좌굴특성시험을 수행하였다. 그 결과, 세장비 L/R=3 이상인 경우 평가식에서 예측된 바와 같은 굽힘좌굴이 지배적으로 나타났으며 세장비 L/R=1.0이하로 작을 경우에는 전단좌굴이 지배적으로 나타났고, 세장비 L/R=1.6 영역에서는 전단과 굽힘좌굴이 동시에 발생하는 복합자굴 특성이 나타났다 그리고 수치해석과 평가식에 의한 좌굴특성평가 결과는 시험결과들과 잘 일치하였다.

서로 다른 세장비에 대한 비파괴실험으로 국산재의 실질탄성계수와 전단탄성계수 결정 (Determination of True Modulus of Elasticity and Modulus of Rigidity for Domestic Woods with Different Slenderness Ratios Using Nondestructive Tests)

  • 차재경
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권1호
    • /
    • pp.36-42
    • /
    • 2015
  • 국산재에 대한 전단탄성계수와 실질탄성계수를 구하기 위해 서로 다른 세장비에 대한 휨강도실험 및 응력파실험을 실시했다. 국산재의 휨 성질들은 12%로 조습 처리된 무결점 시편으로 측정하였다. 휨강도와 탄성계수는 세장비(L/D)에 영향을 받아 세장비가 증가하면 증가하였다. 전단탄성계수(G)와 실질탄성계수는 서로 다른 세장비에 대한 휨강도 실험 및 응력파실험의 결과를 이용하여 계산했고, 그 값들은 국산재가 구조용도로 사용된다면 유용할 것이다. 하지만 이들 결과들은 제한된 수의 시편들에 대한 값으로 이들 수종의 실질 평균값을 나타내진 않는다.

경사 종동력과 끝질량을 갖는 크랙 보의 안정성 해석 (Stability Analysis of Cracked Beams with Subtangential Follower Force and Tip Mass)

  • 손인수;윤한익;노태우
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1410-1416
    • /
    • 2009
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a cracked cantilever beams subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam as slenderness ratio and crack severity is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and crack severity on the critical follower force, stability and the natural frequency of a beam are investigated.

고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구 (An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns)

  • 최창익;박동규;손혁수;김준범;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

편심을 받는 고강도콘크리트 장주의 2차모멘트에 관한 실험적 연구 (Experimental Study on Secondary Moment of High-Strength RC Slender Columns under Eccentric Loads)

  • 박동규;배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.571-576
    • /
    • 1998
  • This paper is a part of a research plan aimed at the verification of basic design rules of high-strength concrete columns. A total of 19 slender column specimens were tested to measure secondary moment and stiffness of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356kg/$\textrm{cm}^2$ to 951kg/$\textrm{cm}^2$, the longitudinal steel ratios were between 1.13% and 5.51%, and slenderness ratios were 40 and 61. Calculated moment magnification factors and column stiffness based on design codes are higher than the test results for high axial load under small eccentricity, for higher slenderness ratio, for lower longitudinal steel ratio, and for high-strength concrete. The moment magnification method of the current design codes may provide a very conservative design for high-strength concrete slender column.

  • PDF

전단 및 단면 관성효과를 고려한 회전 외팔보의 모델링 및 진동해석 (Modeling and Vibration Analysis of Rotating Cantilever Deams Considering Shear and Rotary Inertia Effects)

  • 신상하;유홍희
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.179-185
    • /
    • 1996
  • This paper presents a modeling method for the vibration analysis of a rotating beam the slenderness ratio of which is relatively small. The smaller the slenderness ratio becomes, the larger the shear and rotary inertia effects become. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the effects are important for the accurate estimation of the critical angular speed of the beam.

  • PDF

실선 보강판의 세장비 분포 및 평균 압축 강도 비교 연구 (Slenderness Ratio Distributions and Average Compressive Strengths of Stiffened Plates Used for In-Service Vessels)

  • 남지명;정준모;전상익;이민성;하태범
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.709-718
    • /
    • 2010
  • This paper deals with two contents: first, distributions of plate slenderness ratios, stiffened plate slenderness ratios, and stiffener slenderness ratios, which include dimensions and material variables of stiffened plates, of stiffened plates of large-sized in-service vessels, and, second, comparison of compressive strengths. The investigated vessels consist of 59 tankers, 49 bulkers, 28 product carriers, 15 container carriers, and 12 multi-purpose vessels. The tankers are ranged from handymax class to VLCC and larger than Suezmax class. The sizes of the bulkers are 20K to 200K deadweight. The maximum size of containers is less than 5000TEU class. Two parameters for normal distributions of the slenderness ratios (mean and standard deviation) are suggested and probable ranges of the slenderness ratios are also graphically presented. The ultimate strengths of the stiffened plates are presented using the various simplified formulas and nonlinear FEAs. As well, average compressive strength curves, which are necessary for the estimation of the hull girder moment capacities, are proposed. It is proved that formulas for stiffened plates in CSR overestimate slightly in overall average strain range. Mode5 formula (plate buckling mode) in CSR show unreasonably conservative results with respect to the ultimate strengths rather than post-ultimate average compressive strengths.

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

철근콘크리트 기둥의 좌굴거동에 관한 실험적 연구 (Experiments for the Buckling Behavior of Reinforced Concrete Columns)

  • 조성찬;장정수;김진근;김윤용;김광석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.284-289
    • /
    • 1993
  • To analyze the effects of compressive strength of concrete and longitudinal steel ratio on buckling behavior of columns, 36tied reinforced concrete columns with hinged ends were tested. The 100mm square cross section was used and the amount of eccentricity was 10mm. The compressive strengths of column specimens with slenderness ratios of 15, 30 and 50 were 202, 513 and 752 kg/$\textrm{cm}^2$. The longitudinal steel ratio of columns with bending about a section diagonal and about a principal axis were 2.85%(4-D10). The ratio of ultimate load capacity to that of short column with the same eccentricity was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio, the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that for the same quantity of confining steel and level of axis load, there is little difference between the flexural strength for bending about a section diagonal and for bending about principal axis.

  • PDF