• 제목/요약/키워드: ratio of alloy

검색결과 760건 처리시간 0.025초

강소성압연법으로 제조된 초미세립 마그네슘 재료의 마이크로 성형능 (Micro-forming Ability of Ultrafine-Grained Magnesium Alloy Prepared by High-ratio Differential Speed Rolling)

  • 유성진;김우진
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.104-111
    • /
    • 2011
  • An ultrafine grained Mg-9Al-1Zn magnesium alloy with the mean grain size less than $1{\mu}m$ was produced by using high-ratio differential speed rolling. The processed alloy exhibited excellent superplasticity at relatively low temperatures. The micro-forming tests were carried out using a micro-forging apparatus with micro V-grooved shaped dies made of silicon and the micro-formability was evaluated by means of micro-formability index, $R_f$ ($=A_f/A_g$, $A_f$: formed and inflowed area into the V-groove, $A_g$: area of the V-groove). The $R_f$ value increased with temperature up to $280^{\circ}C$ and then decreased beyond $300^{\circ}C$. The decrease of the $R_f$ value at $300^{\circ}C$ was attributed to the accelerated grain coarsening. Increasing the micro-forging pressure increased the $R_f$ values. At a given die geometry, die filling ability decreased as the die position moved away from the die center to the end. FEM simulation predicted this behavior and a method of improving this problem was proposed.

알루미늄 합금 제조공정에서의 선형계획모델 기반 재활용 원재료 혼합 비율 결정 알고리즘 (A Linear Programming-Based Algorithm for Raw Recycled Material Mixtures in the Aluminum Alloy Fabrication Process)

  • 강민주;김지훈;송경진;변유진;김재곤
    • 산업경영시스템학회지
    • /
    • 제47권2호
    • /
    • pp.40-47
    • /
    • 2024
  • As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.

용사 도막의 내식성에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion Property of Metallizing Film)

  • 신중하;문경만
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.325-330
    • /
    • 2010
  • Many surface protection methods have been developed to apply for constructional steels used under severe corrosive environment. Thermal spray coating has been known to be an attractive technique due to its relatively high coating speed. Furthermore high corrosion resistance of coated film with thermal spray is required to expand its application. Four types of coated films(DFT:300 um) such as pure zinc, pure aluminum and two Al-Zn alloy (Al:Zn=85:15 and Al:Zn=95:5) onto the carbon steel (SS401) were prepared with arc spray, and the corrosion behavior of their samples were evaluated by electrochemical method in this study. Pure aluminum sample showed high corrosion resistance behavior exposed to sea water solution and pure zinc and alloy (Al:Zn=95:5) samples followed pure aluminum sample. The other alloy(Al:Zn=85:15) so called galvalume coated onto the carbon steel ranks the 4th corrosion resistance in this study. The results of porosity ratio of those samples by observation are well matched with the electrochemical data.

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

ECA기법을 활용한 Al-Mg-Mn-Si 합금의 기계적 성질에 관한 연구 (An Experimental Study for Mechanical Properties of Al-Mg-Mn-Si Alloy by ECA pressing)

  • 국종한
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.785-792
    • /
    • 2011
  • Equal channel angular(ECA) pressing is the established processing technique in which a polycrystalline metal is pressed through the die to achieve a very high plastic strain. Therefore, the capability to produce an ultra-fine grain size in the materials is provided. To investigate that mechanical properties at elevated temperature have the ultrafine grain ECA pressing, experiments were conducted on an Al-4.8% Mg-0.07% Mn-O.06% Si alloy. After having been solution treated at 773K for 2hrs, the billet for ECA pressing was inserted into the die. And it was pressed through two channel of equal to cross section intersecting at a 90 degree angle. The billet can be extrude repeatedly because of 1:1 extrusion ratio. Since the billet is passed through the cannel for 2 times, a large strain is accumulated in the alloy. The tensile tests on elevated temperature were carried out with initial strain rate of $10^{-3}s^{-1}$ at eight temperature distributed from 293K to 673K.

Al-$CuAl_2$ 공정복합재료의 기계적 성질에 미치는 응고조건과 열처리의 영향 (Effect of Solidification Conditions and Heat Treatment on the Mechanical Properties of the $Al-CuAl_2$ Eutectic Composite)

  • 이현규;이주홍;홍종휘
    • 한국주조공학회지
    • /
    • 제10권4호
    • /
    • pp.332-341
    • /
    • 1990
  • The structure and tensile properties of the unidirectionally solidified Al-33wt.%Cu alloy have been investigated. Casted Al-33wt.%Cu alloy was unidirectionally solidified with rates (R) between 1㎝/hr and 24cm/hr maintaining the thermal gradient(G) at solid-liquid interface, $32^{\circ}C/cm$ and $21^{\circ}C/cm$. The entectic struture was varied according to the growth condition(G/R radio). When G/R ratio was larger than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$ the lamellar structure was formed, and colony structure was formed when G/R ratio was smaller than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$. The interlamellar spacing(${\gamma}$) in the above alloy system was vaired with the growth rate(R) According to "${\gamma}^2{\cdot}R=8.8{\times}10^{-11}cm^2/sec$" relationship. The yield stress (${\sigma}$0.001) and UTS for samples in the as-grown condition increased with the interlamellar spacing decrease and the values corresponding to colony structure are lower than those corresponding to amellar structure with the same lamellar spacing. The yield stress for samples in aged condition did not change with the interlamellar spacing.

  • PDF

TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교 (Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite)

  • 조영직;박영철
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.

Nb 및 Cr 첨가에 따른 지르코늄 합금의 부식거동 (Corrosion Behavior of Zirconium Alloys with Nb and Cr Addition)

  • 김윤호;목용균;김현길;이종현
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.376-385
    • /
    • 2015
  • The effects of Nb and Cr addition on the microstructure, corrosion and oxide characteristics of Zr based alloys were investigated. The corrosion tests were performed in a pressurized water reactor simulated-loop system at $360^{\circ}C$. The microstructures were examined using OM and TEM, and the oxide properties were characterized by low-angle X-ray diffraction and TEM. The corrosion test results up to 360 days revealed that the corrosion rates were considerably affected by Cr content but not Nb content. The corrosion resistance of the Zr-xNb-0.1Sn-yCr quaternary alloys was improved by an increasing Nb/Cr ratio. The crystal structure of the precipitates was affected by a variation of the Nb/Cr ratio. The Zr-Nb beta-enriched precipitates were mainly formed in the high Nb/Cr ratio alloy while $Zr(NbCr)_2$ precipitates were frequently observed in the low Nb/Cr ratio alloy. The studies of oxide characteristics revealed that the corrosion resistance was related to the crystal structure of the precipitate.

AZ91 마그네슘합금의 부식거동 (Corrosion Behavior of AZ91 Magnesium Alloy)

  • 임창동;김영민;박성혁;유봉선
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.619-627
    • /
    • 2012
  • One of the barriers limiting wide applications of magnesium alloys to various industries is their poor corrosion resistance. The corrosion properties of AZ91 magnesium alloy, which is the most popular magnesium casting alloy, are affected by microstructural and environmental factors. The corrosion properties of AZ91 magnesium alloy are affected by the corrosion properties of ${\alpha}-Mg$ and ${\beta}$ phases, the volume fraction and distribution of ${\beta}$ phase and area ratio of ${\alpha}-Mg/{\beta}$ phases. The corrosion properties of AZ91 magnesium alloy under various environments also change according to the passivity of films and types of corrosion products formed on its surface. The corrosion resistance of the magnesium alloys can be improved by microstructural control through the addition of alloying elements and optimization of the production process.

분무성형을 통한 과공정 Aㅣ-Si 합금 제조 및 기계적 특성 (Fabrication of Hypereutectic Spray-formed Al-Si Alloy and Its Deformation Behavior)

  • 하태권;김요섭;박우진;이언식;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.20-23
    • /
    • 2001
  • Hypereutectic Al-25Si alloy, which is expected to be applied to the cylinder-liner-part of the engine-block of an automobile due to its excellent wear resistance, low density and low thermal expansion coefficient, has been fabricated through a spray forming process. The obtained microstructure of the hypereutectic Al-25Si alloy appeared to consist of Al matrix and equiaxed Si particles of average diameter of 5-7 mm. To characterize the deformation behavior of this alloy, a series of load relaxation and compression tests have been conducted at temperatures ranging from RT to $500^{\circ}C$. The strain rate sensitivity parameter (m) of this alloy has been found to be very low (0.1) below $400^{\circ}C$ and reached maximum value of about 0.2 at $500^{\circ}C$. During the deformation above $300^{\circ}C$ in compression, strain softening has been observed. The diagram of extrusion pressure vs. ram-speed has been constructed. The extrusion has been successfully conducted at the temperatures of $300^{\circ}C$ and above with the ratio of area reduction of 28 and 40 in this study.

  • PDF