Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.2.104

Micro-forming Ability of Ultrafine-Grained Magnesium Alloy Prepared by High-ratio Differential Speed Rolling  

Yoo, Seong Jin (Department of Materials Science and Engineering, Hongik University)
Kim, Woo Jin (Department of Materials Science and Engineering, Hongik University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.2, 2011 , pp. 104-111 More about this Journal
Abstract
An ultrafine grained Mg-9Al-1Zn magnesium alloy with the mean grain size less than $1{\mu}m$ was produced by using high-ratio differential speed rolling. The processed alloy exhibited excellent superplasticity at relatively low temperatures. The micro-forming tests were carried out using a micro-forging apparatus with micro V-grooved shaped dies made of silicon and the micro-formability was evaluated by means of micro-formability index, $R_f$ ($=A_f/A_g$, $A_f$: formed and inflowed area into the V-groove, $A_g$: area of the V-groove). The $R_f$ value increased with temperature up to $280^{\circ}C$ and then decreased beyond $300^{\circ}C$. The decrease of the $R_f$ value at $300^{\circ}C$ was attributed to the accelerated grain coarsening. Increasing the micro-forging pressure increased the $R_f$ values. At a given die geometry, die filling ability decreased as the die position moved away from the die center to the end. FEM simulation predicted this behavior and a method of improving this problem was proposed.
Keywords
metals; severe plastic deformation; mechanical properties; electron backscattering diffraction (EBSD); micro-forming;
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
  • Reference
1 M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, and U. Engel, CIRP Annals-Manufacturing Tech. 50, 455 (2001).
2 U. Engel and R Eckstein, J. Mater. Proce. Tech. 125, 35 (2002).
3 Y. Saotome, K. Imai, and N. Sawanobori, J. Mater. Proce. Tech. 140, 379 (2003).   DOI   ScienceOn
4 Y. Saotome, Y. Noguchi, T. Zhang, and Akihisa Inoue, Mater. Sci. Eng. A 375, 389 (2004).
5 Y. Sotome, T. Hatori, T. Zhang, and A. Inoue, Mater. Sci. Eng. A 304, 716 (2001).
6 Y. Saotome, K. Itoh, T. Zhang, and A. Inoue, Scripta Mater. 44, 1541 (2001).   DOI   ScienceOn
7 Y. Saotome, S. Miwa, T. Zhang, and A. Inoue, J. Mater. Proce. Tech. 113, 64 (2001).   DOI   ScienceOn
8 V. M. Segal et al., Russian Metall 1, 99 (1981).
9 M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valeiv, and T. G. Langdon, Mater. Characterization 37, 277 (1996).   DOI   ScienceOn
10 W. J. Kim, J. B. Lee, W. Y. Kim, H. T. Jeong, and H. G. Jeong, Scripta Mater. 56, 309 (2007).   DOI   ScienceOn
11 W. J. Kim, J. D. Park, and W. Y. Kim, J. Alloys and Compounds 460, 289 (2008).   DOI   ScienceOn
12 H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford (1982).
13 W. J. Kim, J. D. Park, J. Y. Wang, and W. S. Yoon, Scripta Mater. 57, 755 (2007).   DOI   ScienceOn
14 W. J. Kim, S. J. Yoo, and H. K. Kim, Scripta Mater. 59, 599 (2008).   DOI   ScienceOn