• Title/Summary/Keyword: rate of resistance increase

Search Result 687, Processing Time 0.027 seconds

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

A Study on Rheology Properties of High Performance Wet-mix Shotcrete (고성능 습식 숏크리트의 레올로지에 관한 기초연구)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Jin-Woung;Kim, Yong-Bin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • High performance shotcrete has been recently researched partly as a result of high consensus on high strength and durability. However, they are very initial step compared from the advanced countries. For instance, they has been mainly on high strength or durability without any consideration on pumpability and shootability which are very crucial on workability. The purpose of this dissertation was to make a high performance wet-mix shotcrete (high workability) which would solve the general problems of wet-mix process in Korea. For this, the main experimental variables were selected to be silica fume(0.0, 4.5, 9%), air entrained agent(0.0, 0.005%). Rheology with IBB rheometer was measured for evaluating pumpability and shootability as well as pump pressure, rebound rate and build-up thickness. The conclusions from a series of experiments were as follow: The results of analyzing the effects of AE agent and silica fume on rheology indicated that AE agent reduced both of flow resistance(G) and torque viscosity(H) and silica fume increased flow resistance (G) and reduced torque viscosity(H). An increase in the value of torque viscosity(H) produces an increase in the requried pumping pressure. These result indicated that the reduction of torque would work better at improving pumpability. And an increase flow resistance(G) improved shootability(increase build-up thickness and reduce rebound).

A Comparative Study on the Characteristics of Accelerated aging at Low and High Temperatures of the Fluorocarbon Rubber Composites (불소 고무복합체의 저온과 고온촉진노화 특성에 대한 비교 연구)

  • Park, JeongBae;Lee, BeomCheol;Jeong, YoonSeok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.915-922
    • /
    • 2017
  • The study on the thermal and oil resistance rubber composite, 2016. [6] predicted the lifetime of Fluorocarbon Rubber by accelerating aging at high temperature ($150^{\circ}C$, $175^{\circ}C$, $200^{\circ}C$). general rubber products are likely to exhibit different properties depending on the degradation factors such as temperature, humidity, ozone, light, emulsion, mechanical and electrical stress. To solve these problems, We compared the rate of change about tensile strength, elongation rate, volume change rate, weight change rate, thickness change rate, thermal conductivity in low temperature promoting aging on the basis of predictive lifetime of high temperature promoting aging. As a result of the review, the required life expectancy was satisfied, but there was a slight difference in the rate of change between the high-temperature promoted aging life result and the low temperature promoted aging life result. The cause was a reduction in "tensile strength / elongation" and an increase in "volume / weight / thickness" caused by the main chain decomposition of fluorine rubber due to aging at high temperature promoting aging. However, the low temperature promoting aging was caused by the curing reaction of fluorine rubber at $80^{\circ}C$. The tensile strength / elongation and volume / weight / thickness changes were small.

  • PDF

Preliminary Study on the Use of Bacillus sp., Vibrio sp. and Egg White to Enhance Growth, Survival Rate and Resistance of Penaeus monodon Fabricius to White Spot Syndrome Virus

  • Yusoff, F.M.;Shariff, M.;Lee, Y.K.;Banerjee, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1477-1482
    • /
    • 2001
  • Research in low cost feeds with high nutritional value and immunogenicity is important to reduce production cost and increase yields in the shrimp industry. In this study, immunostimulants of bacterial origin (peptidoglycan and lipopolysaccharides) and egg white were incorporated in shrimp diets as feed additives to determine the growth, survival and tolerance of Penaeus monodon to white spot syndrome virus (WSSV). Although the results obtained were not statistically significant (p>0.05) among the treatments, shrimp fed with bacterial additives and egg white showed higher weight gain, specific growth rate and survival than those fed on commercial shrimp diet. Shrimp fed with artificial diet showed 100% mortality when challenged with WSSV. However, shrimp fed on peptidoglycan supplemented diet had higher survival than their counterpart, whereas shrimp fed on egg white supplemented diet had a higher specific growth rate and better tolerance when challenged with WSSV. Further studies are required to determine the effectiveness and optimization of bacterial strains and egg white as feed additives to increase production and enhance the shrimp immune response to diseases.

Concentration of Citrus Essence Aroma Model Solution by Pervaporation (투과증발법을 이용한 감귤 Essence Aroma 모델액의 농축)

  • Lee Yong-Taek;Park Joong-Won;Shin Dong-Ho
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • This is the research about the concentration of trace citrus flavor components in water by pervaporation. We have investigated the permeation characteristics depending on the material and formation of membranes using four siloxane-based polymer composite membranes. We have also chosen the optimal membrane and investigated the permeation characteristics depending on the feed temperature, concentration and flow rate. And then it has been analyzed by using resistance-in series model. In the permeation experiment of citrus essence aroma model solution through the four siloxane-based polymer composite membranes, PVDF/POMS membranes have showed the best flavor flux and enrichment factor. As a result of the permeation experiment depending on the feed temperature, concentration and flow rate, we can find that as the feed temperature and concentration increase, the flavor flux increases while the enrichment factor decreases. And the flavor flux and enrichment factor increased as the flow rate increases.

A Study on the Characteristics of Machining for AC8A-T6 Aluminum Alloy (AC8A-T6 알루미늄 합금재의 절삭가공 특성에 관한 연구)

  • 최현민;김경우;김우순;김용환;김동현;채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.192-197
    • /
    • 2002
  • In this study, examined the cutting characteristics of alumuminum alloy AC8A-T6 that is used to present car piston materials. And in been holding materials machining empirically escape as result that experiment comparison changing the cutting speed and feed on various condition to choose efficient machining condition. The following results can be summarized from this research. 1. As the cutting speed decreased, principal cutting force and thrust cutting force is increased, and reason that cutting force interacts greatly in the low cutting speed is thought by result by BUE's stabilization. 2. The feed speed and cutting speed increase, friction factor is decrescent and the cause appeared the thrust cutting force is fallen than cutting force relatively because chip flow according to increase of the feed rate is constraint. 3. Though specific cutting resistance grows cutting area and the feed rate are few, the cause was expose that shear angle decreases by rake face of tool gets into negative angle remarkably as wear of a cutting tool or defect part of workpiece is cut. 4. Cutting speed do greatly depth of cut is slow, surface roughness examined closely through an experiment that becomes bad, and know that it can get good surface that process cutting speed because do feed rate by 0.1mm/rev low more than 250m/min to get good surface roughness can.

  • PDF

Chemically enhanced steam cleaning for the control of ceramic membrane fouling caused by manganese and humic acid (망간과 휴믹산에 의한 세라믹 막 오염의 제어를 위한 약품 스팀세정의 적용)

  • An, Sun-A;Park, Cheol-Gyu;Lee, Jin-San;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.425-436
    • /
    • 2021
  • In this study, chemically enhanced steam cleaning(CESC) was applied as a novel and efficient method for the control of organic and inorganic fouling in ceramic membrane filtration. The constant filtration regression model and the resistance in series model(RISM) were used to investigate the membrane fouling mechanisms. For total filtration, the coefficient of determination(R2) with an approximate value of 1 was obtained in the intermediate blocking model which is considered as the dominant contamination mechanism. In addition, most of the coefficient values showed similar values and this means that the complex fouling was formed during the filtration period. In the RISM, R c/R f increased about 4.37 times in chemically enhanced steam cleaning compared to physical backwashing, which implies that the internal fouling resistance was converted to cake layer resistance, so that the membrane fouling hardly to be removed by physical backwashing could be efficiently removed by chemically enhanced steam cleaning. The results of flux recovery rate showed that high-temperature steam may loosen the structure of the membrane cake layer due to the increase in diffusivity and solubility of chemicals and finally enhance the cleaning effect. As a consequence, it is expected that chemically enhanced steam cleaning can drastically improve the efficiency of membrane filtration process when the characteristics of the foulant are identified.