Acknowledgement
본 연구는 한국환경산업기술원 "수열 활용확대 기술 및 환경적합성 기술개발사업(G232020120072)"의 지원으로 수행되었습니다.
References
- Abbt-Braun, G., Frimmel, F.H. and Schulten, H. (1989). Structural Investigations of Aquatic Humic Substances by Pyrolysis-Field Ionization Mass Spectrometry and Pyrolysis-Gas chromatography/mass Spectrometry, Water Res., 23(12), 1579-1591. https://doi.org/10.1016/0043-1354(89)90124-3
- Ang, W.S., Lee, S. and Elimelech, M. (2006). Chemical and Physical Aspects of Cleaning of Organic-Fouled Reverse Osmosis Membranes, J. Membr. Sci., 272(1-2), 198-210. https://doi.org/10.1016/j.memsci.2005.07.035
- Cha, B. and Chi, S. (2011). Recent Trends and Prospect in Microfiltration Membrane, Korean Ind. Chem. News, 14(6), 29-37.
- Chang, I., Field, R. and Cui, Z. (2009). Limitations of Resistance-in-Series Model for Fouling Analysis in Membrane Bioreactors: A Cautionary Note, Desalination Water Treat., 8(1-3), 31-36. https://doi.org/10.5004/dwt.2009.687
- Eom, W.S., Kim, S.H. and Shin, H.S. (2015). Oxidative Transformation of Tetracycline in Aqueous Solution by Birnessite, J. Korean Soc. Environ. Eng., 37(2), 73-80. https://doi.org/10.4491/KSEE.2015.37.2.73
- Feng, Y., Smith, D.W. and Bolton, J.R. (2007). Photolysis of Aqueous Free Chlorine Species (HOCl and OCl) with 254 Nm Ultraviolet Light, J. Environ. Eng. Sci., 6(3), 277-284. https://doi.org/10.1139/s06-052
- Field, R.W., Wu, D., Howell, J.A. and Gupta, B.B. (1995). Critical Flux Concept for Microfiltration Fouling, J. Membr. Sci., 100(3), 259-272. https://doi.org/10.1016/0376-7388(94)00265-Z
- Gaffney, J.S., Marley, N.A. and Clark, S.B. (1996). Humic and Fulvic Acids: Isolation, Structure, and Environmental Role, J. Am. Chem. Soc., 2-16.
- Hermia, J. (1982). Constant pressure blocking filtration laws-Application to power law non-Newtonian fluids, Trans IChemE., 60, 183.
- Jermann, D., Pronk, W., Kagi, R., Halbeisen, M. and Boller, M. (2008). Influence of interactions between NOM and particles on UF fouling mechanisms, Water Res., 42 3870-3878. https://doi.org/10.1016/j.watres.2008.05.013
- Jiraratananon, R., Uttapap, D. and Tangamornsuksun, C. (1997). Self-Forming Dynamic Membrane for Ultrafiltration of Pineapple Juice, J. Membr. Sci., 129(1), 135-143. https://doi.org/10.1016/S0376-7388(97)00046-X
- Kang, J.S., Park, S., Song, J., Jeong, A., Lee, J.J. and Kim, H.S. (2018). Evaluation of membrane fouling characteristics due to manganese and chemical cleaning efficiency in microfiltration membrane process, Korean Soc. Water Wastewater, 31(6), 539-549.
- Kang, J.S. (2019). Analysis on Behavior of Membrane Fouling according to the Application of Steam Cleaning and Pretreatment Process in Ceramic Membrane Filtration System, Dissertation, Myongji University.
- Koltuniewicz, A.B., Field, R. and Arnot, T. (1995). Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline, J. Membr. Sci., 102, 193-207. https://doi.org/10.1016/0376-7388(94)00320-X
- Lee, C.H. (2018). Evaluation of fouling caused by manganese and salt cleaning efficiency in membrane based water treatment process, Dissertation, Sungkyunkwan University.
- Lee, H.C. (2008). Hybrid Process Development of Ceramic Microfiltration and Activated Carbon Adsorption for Advanced Water Treatment of High Turbidity Source, Master's Thesis, Hallym University.
- Madaeni, S. and Samieirad, S. (2010). Chemical cleaning of reverse osmosis membrane fouled by wastewater, Desalination, 257(1-3), 80-86. https://doi.org/10.1016/j.desal.2010.03.002
- Nam, S.T. and Han, M.J. (2005). Flux decline behavior in cross-flow microfiltration of inorganic colloidal suspensions, Membr. J., 15(4), 338-348.
- Okampo, E.J. and Nwulu, N. (2021). Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review, Renew. Sust. Energ. Rev., 140, 110712. https://doi.org/10.1016/j.rser.2021.110712
- Park, S., Kang, J.S., Lee, J.J., Vo, T. and Kim, H.S. (2018). Application of physical and chemical enhanced backwashing to reduce membrane fouling in the water treatment process using ceramic membranes, Membr., 8(4), 110. https://doi.org/10.3390/membranes8040110
- Park, S. (2019). Application of Steam Washing for Enhancing the Cleaning Efficiency in Ceramic Membrane, Master's Thesis, Myongji University.
- Rebhun, M. and Lurie, M. (1993). Control of organic matter by coagulation and floc separation, Water Sci. Technol., 27(11), 1-20. https://doi.org/10.2166/wst.1993.0260
- Seoul Water Research Institute. (2015). Seoul Water 2015-II, Seoul Water Research Institute, Seoul, Korea, 291-332.
- Seoul Water Research Institute. (2017). Seoul Water 2017, Seoul Water Research Institute, Seoul, Korea, 8-40.
- Tanger IV J.C. Pitzer, K.S. (1989). Calculation of the Ionization Constant of H2O to 2,273 K and 500 MPa, AIChE J., 35(10), 1631-1638. https://doi.org/10.1002/aic.690351007
- Wang, S. and Mulligan, C.N. (2006). Effect of natural organic matter on arsenic release from soils and sediments into groundwater, Environ. Geochem. Health, 28(3), 197-214. https://doi.org/10.1007/s10653-005-9032-y
- Wang, X., Ma, J., Wang, Z., Chen, H., Liu, M. and Wu, Z. (2018). Reinvestigation of membrane cleaning mechanisms using NaOCl: role of reagent diffusion, J. Membr. Sci., 550, 278-285. https://doi.org/10.1016/j.memsci.2017.12.083