• Title/Summary/Keyword: rare earth elements

Search Result 331, Processing Time 0.029 seconds

Optical properties of Rare-Earth-Implanted GaN Epilayer (희토류 원소를 이온주입법으로 도핑한 GaN 박막의 광전이 특성)

  • Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.210-214
    • /
    • 2007
  • We have studied optical transitions of Gd-implanted GaN epilayers. Photoluminescence transition intensity at 590 nm at T=5 K diminishes and its center position moves to short avelength (blue shift) with increasing temperature up to 200 K. Above T=200 K, the transition intensity increases with increasing temperature while the center position remains the same. We believe that such anomalous optical transition behavior is due to the effect of rare-element in the semiconductor host material and lattice imperfection which was occurred during the implantation process well as.

Partitioning effects and corrosion characteristics of oxyapatite glass-ceramic wasteforms sequestering rare-earth elements

  • Kim, Miae;Kang, Jaehyuk;Yoon, Jang-Hee;Lee, Sang-Geul;Um, Wooyong;Kim, Hyun Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.997-1002
    • /
    • 2022
  • Oxyapatite[Ca2Nd8(SiO4)6O2] glass-ceramics have been suggested as wasteforms for the immobilisation of rare-earth radioactive nuclides because of their high waste-loading capability and good chemical durability. In particular, a partitioning effect is predicted to contribute to an enhancement of corrosion resistance in glass-ceramics compared with that of conjugate glasses of the same composition. Because rare-earths are inherently insoluble nuclides, detection of changes in corrosion behavior between glass-ceramics and conjugate glasses under normal conditions is not easy. In this study, therefore, we revealed the partitioning effect by exposing glass-ceramics and glasses to solution of pH 2, 7 and 10 at 90 ℃ for 20 d. In addition, we proposed the corrosion mechanism for oxyapatite glass-ceramics under various corrosion conditions. Especially, the glassy phase dissolved first, followed by the oxyapatite phase during pH 7 corrosion.

Microstructure Related to the Growth of Rare-earth Mineral in the Eoraesan Area, Chungju, Korea (충주 어래산 지역에서 희토류 광물의 성장과 관련된 미구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.129-141
    • /
    • 2019
  • The Eoraesan area, Chungju, which is located in the northwestern part of Ogcheon Metamorphic Zone, Korea, mainly consists of the Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks which intruded it. The metaacidic rocks (MAR) of the Gyemyeongsan Formation show a maximum radioactive value, and the Early Jurassic biotite granite is regionally distributed in this area. In this paper is researched the microstructure related to the growth of rare-earth mineral of allanite in the MAR, and is considered the source and occurrence time of rare-earth element (REE) mineralization. The MAR is mainly composed of alkalic feldspar (mainly microcline), quartz, iron-oxidizing mineral, biotite, muscovite, plagioclase, hornblende, allanite, zircon, epidote, fluorite, apatite, garnet, (clino)zoisite etc. The radioactive elements contained in the allanite cause a dark brown hale in the surrounding biotite, and the allinte also occurs as aggregate along the regional foliation. The deflection of regional foliation and the strain shadows, which are common to the pre-tectonic porphyroblast grown before the formation of regional foliation, can't be observed around most allanites (aggregates). The grain size and orientation of ironoxidizing mineral included in the allanite aggregate are the same as those in the matrix. It is recognized the hydrothermal conversion of hornblende to biotite due to the intrusion of igneous rock, and the secondary biotite occurs and contacts with allanite, zircon, epidote etc. These microstructures indicate that the rare-earth mineral of allanite (aggregate) grew by the hydrothermal alteration due to the intrusion of igneous rock after the formation of regional foliation. It is considered that the REE mineralization is closely related to the intrusion of Early Jurassic biotite granite which is regionally distributed in this area.

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

Evaluation of Some Rare Metals and Rare Earth Metals Contained in Coal Ash of Coal-fired Power Plants in Korea (국내 석탄화력발전소 석탄회 중 희유금속 가치 평가)

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • The content distributions of some rare metals and rare earthe metals in coal ash (fly ash, bottom ash and pond ash) and leachate from coal-fired power plants were investigated. In case of Yttrium (Y) and Neodymium (Nd) which were strategic critical elements, their contents were ranged from about 23 ~ 75 mg/kg and it is shown they are worth to be developed for the recovery and separation method. Considering the annual amount of fly ash and bottom ash and pond ash, coal-fired power plants have great value of about 1,670 billion KRW and it is regards they are worthy as urban mines.

EFFECT OF MAGNET SCRAP SIZE ON THE EXTRACTION BEHAVIOR OF HEAVY RARE EARTH ELEMENTS BY LIQUID METAL EXTRACTION

  • SUN-WOO NAM;MOHAMMAD ZARAR RASHEED;SANG-MIN PARK;SANG-HOON LEE;DO-HYANG KIM;TAEK-SOO KIM
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1273-1276
    • /
    • 2020
  • Liquid metal extraction (LME) process results in 100% neodymium (Nd) extraction but the highest extraction efficiency reported for Dysprosium (Dy) so far is 74%. Oxidation of Dy is the major limiting factor for incomplete Dy extraction. In order to enhance the extraction efficiency and to further investigate the limiting factors for incomplete extraction, experiments were carried out on six different particle sizes of under 200 ㎛, 200-300 ㎛, 300-700 ㎛, 700-1000 ㎛, 1000-2000 ㎛ and over 2000 ㎛ at 900℃ with magnesium-to-magnet scrap ratio of 15:1 for 6, 24 and 48 hours, respectively. This research identified Dy2Fe17 in addition to Dy2O3 phase to be responsible for incomplete extraction. The relationship between Dy2Fe17 and Dy2O3 phase was investigated, and the overall extraction efficiency of Dy was enhanced to 97%.

Allanite Mineralization in the Mt. Eorae Area (어래산지역(御來山地域)의 갈렴석광상(褐簾石鑛床))

  • Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.151-166
    • /
    • 1989
  • A study of rare-earth mineralization in Kyemyungsan metasedimentary formation of Precambrian Ogcheon Group was carried out in the Mt. Eore Area near Choongju City based on the thorium (Th) and uranium (U) count data of geophysical airborne survey. This rare-earth mineralization was found in the magnetite-bearing banded quartizite which contains diagnostically some amounts of the metamict allanite. The brown colored allanites are distributed as aggregates of fine grains and sometimes banded structures with magnetite (inter growth) along the banding. The ore bed is displaced by the small faults and granite intrusions, and separated 5 ore blocks. The dimensions of the outcrop are 50-80 m in width, 1,500 m in length with the strike of $N70-80^{\circ}E$ and dip of $50-80^{\circ}NW$. In the field, the values of total gamma ray count of GR-101A scintillometer were able to measure more than 400 cps and maximum 1,500 cps, which data are coincided with the values of GR-310 gamma ray spectrometer and the gamma ray count of well logging data. The chemical compositions of the allanites from EPMA data are ranged from$\sum^{TR_2O_3}$ 18.57% to 26.00%, and the cerium oxides ($Ce_2O_3$) of allanite are positive relation with $La_2O_3$, MgO, FeO, MnO and negative relation with $SiO_2$, $Al_2O_3$, $Nd_2O_3$. The result of Neutron Activation Analysis (N.A.A.), Multi-Channel Analysis (M.C.A.) and wet chemistry of 25 outcrop samples for the elements of REE, Zr, U, Th shows strong anomalies. The good correlation elements with the thorium (Th) are the elements of La, Ce, LREE, $TR_2O_3$, Pr, Sm, Yb, Lu by the increasing order.

  • PDF

Rare Earth Dispute and Trend in Development of NdFeB Anisotropic Bonded Magnets (희토류 자원분쟁과 NdFeB계 이방성 본드자석 개발동향)

  • Kim, H.J.;Kim, S.M.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2012
  • NeFeB anisotropy bonded magnet has proposed a new paradigm of weight reduction of small motors by replacing the conventional ferrite permanent magnets with its high magnetic property of 25 MGOe during last five years. It has also advanced by leaps and bounds in the field of motor industry for automobiles and electric power tools. And it has led a new innovation of fifty percent weight lightening compared to its current motors by correctly focusing on fuel performance improvement through weight lightening that automobile industry chased. There was, however, another price skyrocketing in 2011 after China had announced its export regulation in rare earth materials in July, 2010. And this price change has an extensive impact on the industries that consume rare earth magnets. This environmental change has caused technical challenge to improve the performance by using least amount of rare earth elements in NdFeB anisotropy bonded magnets, and led to make a new technical approach to a new applied field. In this article, we will show how each nation deals with this industrial issue, and introduce development trend and application of anisotropic NdFeB bonded magnets, so-called MAGFINE made by Aichi Steel Corp.

Petrochemical Study on the Alkaline Gabbroic Host Rocks of Titaniferous Magnetite Deposits in Gonamsan, Yeoncheon-Gun, South Korea (고남산(古南山) 함(含)티탄자철광상(磁鐵鑛床)의 모암(母岩)인 알카리반려암질암의 암석화학적(岩石化學的) 연구(硏究))

  • Chang, Ho Wan;Yum, Byoung Woo;Park, No Young
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 1987
  • The host rocks of titaniferous magnetite deposits in Gonamsan are alkaline gabbros, which are typical of undersaturated alkaline rocks in terms of the lack of normative quartz. According to field occurrences and petrographic features, these alkaline gabbros are divided into 3 rock types: coarse-grained and pegmatitic rock, medium-grained rock with equigranular texture, and layered cumulate rock. All these rocks mainly contain clinopyroxene(salite), plagioclase(An 43-66), pargasite, and ilmenite. The accessory minerals are apatite, sphene, quartz, and sometimes titaniferous magnetite. Pargasite, sphene, and quartz are considered to be secondary minerals formed by the reaction among clinopyroxene, plagioclase and Fe-Ti oxide at deuteric stage. Fe-Ti oxides generally occur as ilmenite in the alkaline rocks, and titaniferous magnetite in the ore deposits. Layered cumulate rocks are characterized by a recurrence of discontinuous thin mesolayer of clinopyroxene-pargasite within leucolayer mainly composed of plagioclase. Clinopyroxene is cumulus mineral whereas plagioclase, ilmenite and apatite occur as intercumulus minerals. According to the variation diagrams of oxide and trace element contents against the differentiation index, incompatible elements, such as Na, Ba and Sr, show positive correlations whereas compatible elements, such as Mg and Cr, show negative correlations. However some compatible elements, such as Co, Ni and V show irregular variations, reflecting relative cumulate status of cumulus and intercumulus minerals. On the de la Roche multicationic diagram, these alkaline gabbros are distributed along the differentiation curve of undersaturated alkaline series from alkaline basaltic composition through basanitic composition to tephritic composition. Layered cumulate rocks, which are distributed between basanitic composition and tephritic composition, reflect their cumulate character, slightly scattering away from the curve. The medium-grained rock shows higher contents in Ba, Sr and light rare earch elements than the coarse-grained and pegmatitic rock. The former shows two times higher contents of total rare earth elements than the latter, $while(La/Lu)_{cn}$ ratios maintain fairly constant values of 5.08~5.06 in these two rocks. This means that coarse-grained and pegmatitic rock, as compared with the medium-grained rock, was formed by the earlier differentiated magma but rare-earth element distribution pattern remained almost parallel during differentiation. From the data the above mentioned, these alkaline gabbros are considered to be comagmatic and to be formed by intrusions of differentiated magmas in its reservoir.

  • PDF

Simulation of Rare Earth Elements Removal Behavior in TRU Product Using HSC Chemistry Code (HSC Chemistry 코드를 이용한 TRU 생성물 중의 희토류 원소 제거 거동 모사)

  • Paek, Seungwoo;Lee, Chang Hwa;Yoon, Dalsung;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • The feasibility of rare earth (RE) removal process via oxidation reactions with UCl3 was investigated using the HSC Chemistry code to reduce the concentrations of RE in transuranic (TRU) products. The composition and thermodynamic data of TRU and RE elements contained in the reference spent fuel were examined. The reactivity was evaluated by calculating equilibrium data considering oxidation reactions with UCl3. Both RE removal rate and TRU recovery rate were evaluated for the two cases, wherein TRU products with different RE concentrations were used. When TRU products were reacted with UCl3, selective oxidation was driven by the difference in the Gibbs free energy of each element. The calculation results imply that the TRU/RE ratio of the final product can be increased by removing RE elements while maintaining the maximum recovery rate of TRU, which is accomplished by controlling the amount of UCl3 injected. Since the results of this study are based on thermodynamic equilibrium data, there are many limitations to apply to the actual process. However, it is expected to be used as an important data for the process design to supply the TRU product of pyroprocessing to SFR's fuel demanding low RE concentrations.