DOI QR코드

DOI QR Code

Simulation of Rare Earth Elements Removal Behavior in TRU Product Using HSC Chemistry Code

HSC Chemistry 코드를 이용한 TRU 생성물 중의 희토류 원소 제거 거동 모사

  • Received : 2020.05.18
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

The feasibility of rare earth (RE) removal process via oxidation reactions with UCl3 was investigated using the HSC Chemistry code to reduce the concentrations of RE in transuranic (TRU) products. The composition and thermodynamic data of TRU and RE elements contained in the reference spent fuel were examined. The reactivity was evaluated by calculating equilibrium data considering oxidation reactions with UCl3. Both RE removal rate and TRU recovery rate were evaluated for the two cases, wherein TRU products with different RE concentrations were used. When TRU products were reacted with UCl3, selective oxidation was driven by the difference in the Gibbs free energy of each element. The calculation results imply that the TRU/RE ratio of the final product can be increased by removing RE elements while maintaining the maximum recovery rate of TRU, which is accomplished by controlling the amount of UCl3 injected. Since the results of this study are based on thermodynamic equilibrium data, there are many limitations to apply to the actual process. However, it is expected to be used as an important data for the process design to supply the TRU product of pyroprocessing to SFR's fuel demanding low RE concentrations.

희토류(Rare Earth) 함량이 높은 TRU 생성물 중의 RE 원소를 감소시키기 위하여 RE 원소와 UCl3의 산화반응을 이용한 RE 제거 공정의 타당성을 HSC Chemistry 코드를 이용하여 검토하였다. 사용후핵연료에 포함된 TRU 원소 및 RE 원소의 조성 및 열역학적 자료를 검토하였으며, UCl3와의 산화 반응에 따른 평형 자료를 계산하여 공정 가능성을 검토하였다. 실제 파이로 프로세싱 처리를 가정한 물질수지로부터 TRU 생성물의 RE 함량이 다른 두 가지 경우에 대하여 RE 원소 제거율과 TRU 회수율을 평가하였다. TRU 생성물을 산화제인 UCl3와 반응시켰을 때 각 원소의 Gibbs free energy의 차이에 의한 선택적 산화 반응이 일어났다. 투입된 UCl3 양을 조절하여 TRU 회수율을 최대로 유지하면서도 RE 원소를 제거하여 최종생성물의 TRU/RE 비를 증가시킬 수 있는 가능성을 계산 결과로 확인하였다. 본 연구의 결과들은 열역학적 평형 자료에 기반한 결과이므로 실제 공정에 적용하기에는 많은 차이점이 존재한다. 그러나 TRU 물질을 취급하기 어려운 환경에서 파이로프로세싱의 TRU 생성물을 고속로의 핵연료로 공급하기 위한 공정 설계에 중요한 자료로 활용될 것으로 기대된다.

Keywords

References

  1. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carles, "Development of pyroprocessing technology", Prog. Nucl. Energy, 31(1-2), 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  2. J.L. Willit, W.E. Miller, and J.E. Battles, "Electrorefining of uranium and plutonium: a literature review", J. Nucl. Mater., 195(3), 229-249 (1992). https://doi.org/10.1016/0022-3115(92)90515-M
  3. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of pyroprocessing development in Korea", Nucl. Eng. Technol., 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  4. H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing technology development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  5. K. Uozumi, M. Ilzuka, T. Kato, T. Inoue, O Shirai, T. Iwai, and Y. Arai, "Electrochemical behaviors of uranium and plutonium at simultaneous recoveries into liquid cadmium cathodes", J. Nucl. Mater., 325(1), 34-43 (2004). https://doi.org/10.1016/j.jnucmat.2003.10.010
  6. T. Koyama, T.R. Johnson, and D.F. Fischer, "Distribution of actinides in molten chloride salt/cadmium metal system", J. Alloy. Compd., 189(1), 37-44 (1992). https://doi.org/10.1016/0925-8388(92)90043-9
  7. S.X. Li, S.D. Herrmann, K.M. Goff, M.F. Simpson, and R.W. Benedict, "Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt", Nucl. Technol., 165(2), 190-199 (2009). https://doi.org/10.13182/NT09-A4085
  8. T. Koyama, M. Ilizuka, N. Kondo, R. Fujita, and H. Tanaka, "Electrodeposition of uranium in stirred liquid cadmium cathode", J. Nucl. Mater., 247, 227-231 (1997). https://doi.org/10.1016/S0022-3115(97)00100-1
  9. T. Kato, T. Inoue, T. Iwai, and Y. Arai, "Separation behaviors of actinides from rare-earths in molten salt electro-refining using saturated liquid cadmium cathode", J. Nucl. Mater., 357(1-3), 105-114 (2006). https://doi.org/10.1016/j.jnucmat.2006.06.003
  10. A.B. Cohen, H. Tsai, and L.A. Neimark, "Fuel/cladding compatibility in U-19Pu-10Zr/HT9-clad fuel at elevated temperature", J. Nucl. Mater., 204, 244-251 (1993). https://doi.org/10.1016/0022-3115(93)90223-L
  11. J. Kim, B.O. Lee, C.B. Lee, S.H. Jee, and Y.S. Yoon, "Formation of intermetallic compound at interface between rare earth elements and ferric-martensitic steel by fuel cladding chemical interaction", J. Rare Earth, 30(6), 599-603 (2012). https://doi.org/10.1016/S1002-0721(12)60097-0
  12. S. Paek, D. Yoon, J. Jang, G.Y. Kim, and S.J. Lee, "Removal of rare earth elements from a U/RE ingot via a reaction with $UCl_3$", J. Radioanal. Nucl. Chem., 322(2), 495-502 (2019). https://doi.org/10.1007/s10967-019-06716-1
  13. T. Koyama, K. Uozumi, M. Iizuka, Y. Sakamura, and K. Kinoshita, Pyrometallurgical data book, CRIEPI Research Laboratory Report No. T93033 (1994)
  14. A. Ronie, HSC Chemistry 9.30. Qutotec Research Center, Finland (2017).
  15. H.J. Lee, H.S. Im, and B.H. Won, Requirement of an integrated operational model for pyroprocessing, Korea Atomic Energy Research Institute, KAERI/TR-6445/2016 (2016).
  16. H.S. Im, H.J. Lee, S. Yu, and J.H. Ku, Analysis of WITNESS-based integrated operational model for KAPF, Korea Atomic Energy Research Institute, KAERI/TR-6579/2016 (2016).
  17. M.A. Williamson and J.L. Willit, "Pyroprocessing flowsheets for recycling used nuclear fuel", Nucl. Eng. Technol., 43(4), 329-334 (2011) https://doi.org/10.5516/NET.2011.43.4.329