Browse > Article
http://dx.doi.org/10.1016/j.net.2021.08.036

Partitioning effects and corrosion characteristics of oxyapatite glass-ceramic wasteforms sequestering rare-earth elements  

Kim, Miae (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology)
Kang, Jaehyuk (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology)
Yoon, Jang-Hee (Busan Centre, Korea Basic Science Institute)
Lee, Sang-Geul (Daegu Centre, Korea Basic Science Institute)
Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology)
Kim, Hyun Gyu (Busan Centre, Korea Basic Science Institute)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 997-1002 More about this Journal
Abstract
Oxyapatite[Ca2Nd8(SiO4)6O2] glass-ceramics have been suggested as wasteforms for the immobilisation of rare-earth radioactive nuclides because of their high waste-loading capability and good chemical durability. In particular, a partitioning effect is predicted to contribute to an enhancement of corrosion resistance in glass-ceramics compared with that of conjugate glasses of the same composition. Because rare-earths are inherently insoluble nuclides, detection of changes in corrosion behavior between glass-ceramics and conjugate glasses under normal conditions is not easy. In this study, therefore, we revealed the partitioning effect by exposing glass-ceramics and glasses to solution of pH 2, 7 and 10 at 90 ℃ for 20 d. In addition, we proposed the corrosion mechanism for oxyapatite glass-ceramics under various corrosion conditions. Especially, the glassy phase dissolved first, followed by the oxyapatite phase during pH 7 corrosion.
Keywords
Corrosion; Apatite; Glass ceramics; Nuclear applications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Colombani, The alkaline dissolution rate of calcite, J. Phys. Chem. Lett 7 (2016) 2376-2380, https://doi.org/10.1021/acs.jpclett.6b01055.   DOI
2 J.V. Crum, L. Turo, B. Riley, M. Tang, A. Kossoy, Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals, J. Am. Ceram. Soc. 95 (2012) 1297-1303, https://doi.org/10.1111/j.1551-2916.2012.05089.x.   DOI
3 M.A. Kim, J.H. Song, W. Um, N. Hyatt, S.-K. Sun, J. Heo, Structure analysis of vitusite glass-ceramic waste forms using extended x-ray absorption fine structures, Ceram. Int. 43 (2017) 4687-4691, https://doi.org/10.1016/j.ceramint.2016.12.129.   DOI
4 N.A. Krishnan, S. Mangalathu, M.M. Smedskjaer, A. Tandia, H. Burton, M. Bauchy, Predicting the dissolution kinetics of silicate glasses using machine learning, J. Non-Cryst. Solids 487 (2018) 37-45, https://doi.org/10.1016/j.jnoncrysol.2018.02.023.   DOI
5 S. Gin, P. Jollivet, M. Tribet, S. Peuget, S. Schuller, Radionuclides containment in nuclear glasses: an overview, Radiochim. Acta 105 (2017) 927-959, https://doi.org/10.1515/ract-2016-2658.   DOI
6 A. Jarosikova, V. Ettler, M. Mihaljevic, B. Kribek, B. Mapani, The pH-dependent leaching behavior of slags from various stages of a copper smelting process: environmental implications, J. Environ. Manage. 187 (2017) 178-186, https://doi.org/10.1016/j.jenvman.2016.11.037.   DOI
7 M. Kim, J. Heo, Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing, J. Nucl. Mater. 467 (2015) 224-228, https://doi.org/10.1016/j.jnucmat.2015.09.040.   DOI
8 I. Bardez, D. Caurant, F. Ribot, P. Loiseau, J. Dussossoy, F. Villain, N. Baffier, C. Fillet, Structural characterisations of rare earth-rich glasses for nuclear waste immobilisation, Mater. Res. Soc. Symp. Proc. 807 (2003), https://doi.org/10.1557/PROC-807-157.   DOI
9 I. Kumari, B. Kumar, A. Khanna, A review on UREX processes for nuclear spent fuel reprocessing, Nucl. Eng. Des. 358 (2020), 110410, https://doi.org/10.1016/j.nucengdes.2019.110410.   DOI
10 W. Lee, M. Ojovan, M. Stennett, N. Hyatt, Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3-12, https://doi.org/10.1179/174367606X81669.   DOI
11 B. Karmakar, K. Rademann, A.L. Stepanov, Glass Nanocomposites: Synthesis, Properties, and Applications, William Andrew, 2016.
12 M. Kim, C.L. Corkhill, N.C. Hyatt, J. Heo, Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides, Sci. Rep. 8 (2018) 5320, https://doi.org/10.1038/s41598-018-23665-z.   DOI
13 S. Mohd Fadzil, P. Hrma, M.J. Schweiger, B.J. Riley, Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste, J. Nucl. Mater. 465 (2015) 657-663, https://doi.org/10.1016/j.jnucmat.2015.06.050.   DOI
14 H. Toraya, A new method for quantitative phase analysis using X-ray powder diffraction data: direct derivation of weight fractions from observed integrated intensities and chemical compositions of the individual phases, J. Appl. Crystallogr. 49 (2016) 1508-1516, https://doi.org/10.1107/S1600576716010451.   DOI
15 M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y. Yue, Topological principles of borosilicate glass chemistry, J. Phys. Chem. B 115 (2011) 12930-12946, https://doi.org/10.1021/jp208796b.   DOI
16 J.S. McCloy, A. Goel, Glass-ceramics for nuclear-waste immobilization, MRS Bull. 42 (2017) 233-240, https://doi.org/10.1557/mrs.2017.8.   DOI
17 J. Neeway, A. Abdelouas, B. Grambow, S. Schumacher, C. Martin, M. Kogawa, S. Utsunomiya, S. Gin, P. Frugier, Vapor hydration of SON68 glass from 90℃ to 200℃: a kinetic study and corrosion products investigation, J.non-cryst. Solid. 358 (2012) 2894-2905, https://doi.org/10.1016/j.jnoncrysol.2012.07.020.   DOI
18 A. Abdelouas, Y.E. Mendili, A.A. Chaou, G. Karakurt, C. Hartnack, J.-F. Bardeau, T. Saito, H. Matsuzaki, A preliminary investigation of the ISG glass vapour hydration, Int. J. Appl. Glass Sci. 4 (2013) 307-316, https://doi.org/10.1111/ijag.12055|.   DOI
19 J.A. Peterson, J.V. Crum, B.J. Riley, R.M. Asmussen, J.J. Neeway, Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO4] for a glass-ceramic waste form, J. Nucl. Mater. 510 (2018) 623-634, https://doi.org/10.1016/j.jnucmat.2018.08.048.   DOI
20 N.Y. Mostafa, A.A. Shaltout, H. Omar, S.A. Abo-El-Enein, Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites, J. Alloys Compd. 467 (2009) 332-337, https://doi.org/10.1016/j.jallcom.2007.11.130.   DOI
21 M. Kim, J. Heo, Vitusite glass-ceramics wasteforms for immobilization of lanthanide wastes generated by pyro-processing, Ceram. Int. 41 (2015) 6132-6136, https://doi.org/10.1016/j.ceramint.2015.01.035.   DOI
22 Z. Tian, J. Zhang, L. Zheng, W. Hu, X. Ren, Y. Lei, J. Wang, General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300 ℃, Corrosion Sci. 148 (2019) 281-292, https://doi.org/10.1016/j.corsci.2018.12.032.   DOI
23 J.J. Neeway, R.M. Asmussen, E.M. McElroy, J.A. Peterson, B.J. Riley, J.V. Crum, Kinetics of oxyapatite [Ca2Nd8(SiO4)6O2] and powellite [(Ca,Sr,Ba)MoO4] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions, J. Nucl. Mater. 515 (2019) 227-237, https://doi.org/10.1016/j.jnucmat.2018.12.043.   DOI
24 J. Crum, V. Maio, J. McCloy, C. Scott, B. Riley, B. Benefiel, J. Vienna, K. Archibald, C. Rodriguez, V. Rutledge, Z. Zhu, J. Ryan, M. Olszta, Cold crucible induction melter studies for making glass ceramic waste forms: a feasibility assessment, J. Nucl. Mater. 444 (2014) 481-492, https://doi.org/10.1016/j.jnucmat.2013.10.029.   DOI