• Title/Summary/Keyword: rapid detection

Search Result 1,813, Processing Time 0.028 seconds

Ultra-Rapid Two-Step Real-Time PCR for the Detection of Human Immunodeficiency Virus (HIV) (Human Immunodeficiency Virus (HIV) 검출물 위한 초고속 이단계 PCR 진단법)

  • Lee, Dong-Woo;Kim, Eul-Hwan;Yoo, Mi-Sun;Kim, Il-Uk;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.264-272
    • /
    • 2007
  • For the detection of human immunodeficiency virus (HIV), ultra-rapid real-time PCR methods were developed. The target DNA sequences were used 495 bp HIV-1-specific env gene (gi_1184090) and 294 bp HIV-2-specific env gene (gi_1332355). Ultra-rapid real-time PCR was peformed by $Genspector^{TM}$ (Samsung, Korea) using microchip-based, $6\;{\mu}l$ of reaction volume with extremely short running time in only 2 steps (denaturation, annealing/extension) in each cycle of PCR. Total reaction for 30 cycled ultra-rapid PCR detection including melting temperature analysis was completed in 7 min and 30 sec. The HIV-1-specific 117 bp-long or HIV-2-spe-cific 119 bp-long PCR products were successfully amplified from the minimum of template, $2.3{\times}10^3$ copies of each euv gene using 30 cycled two-steps ultra-rapid PCR. This kind of ultra-rapid real-time PCR method would be useful not only for the rapid-detection of HIV, but also rapid-detection of other pathogens.

Rapid Detection of Enterobacter sakazakii Using TaqMan Real-Time PCR Assay

  • Kang, Eun-Sil;Nam, Yong-Suk;Hong, Kwang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.516-519
    • /
    • 2007
  • Enterobacter sakazakii is an emerging food pathogen, which induces severe meningitis and sepsis in neonates and infants, with a high fatality rate. The disease is generally associated with the ingestion of contaminated infant formula. In this study, we describe the development of a real-time PCR protocol to identify E. sakazakii using a TaqMan probe, predicated on the nucleotide sequence data of the 168 rRNA gene obtained from a variety of pathogens. To detect E. sakazakii, four primer sets and one probe were designed. Five strains of E. sakazakii and 28 non-E. sakazakii bacterial strains were used in order to ensure the accuracy of detection. The PCR protocol successfully identified all of the E. sakazakii strains, whereas the 28 non-E. sakazakii strains were not detected by this method. The detection limits of this method for E. sakazakii cells and purified genomic DNA were 2.3 CFU/ assay and 100 fg/assay, respectively. These findings suggest that our newly developed TaqMan real-time PCR method should prove to be a rapid, sensitive, and quantitative method for the detection of E. sakazakii.

Accurate and Rapid Methods for Detecting Salmonella spp. Using Polymerase Chain Reaction and Aptamer Assay from Dairy Products: A Review

  • Hyeon, Ji-Yeon;Seo, Kun-Ho;Chon, Jung-Whan;Bae, Dongryeoul;Jeong, Dongkwang;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.169-188
    • /
    • 2020
  • Salmonella spp. is the most common cause of gastrointestinal food poisoning worldwide, and human salmonellosis is mostly caused by the consumption of contaminated food. Therefore, the development of rapid detection methods for Salmoenlla spp. and rapid identification of the source of infection by subtyping are important for the surveillance and monitoring of food-borne salmonellosis. Therefore, this review introduces (1) History and nomenclature of Salmoenlla spp., (2) Epidemiology of Salmoenlla spp., (3) Detection methods for Salmoenlla spp. - conventional culture method, genetic detection method, molecular detection methods, and aptamer, and (4) Subtyping methods for Salmoenlla spp. - pulsed-field gel electrophoresis and repetitive sequence-based polymerase chain reaction (PCR).

Rapid and Sensitive Detection of the Causal Agents of Postharvest Kiwifruit Rot, Botryosphaeria dothidea and Diaporthe eres, Using a Recombinase Polymerase Amplification Assay

  • Gi-Gyeong Park;Wonyong Kim;Kwang-Yeol Yang
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.522-527
    • /
    • 2023
  • The occurrence of postharvest kiwifruit rot has caused great economic losses in major kiwifruit-producing countries. Several pathogens are involved in kiwifruit rot, notably Botryosphaeria dothidea, and Diaporthe species. In this study, a recombinase polymerase amplification (RPA) assay was developed for the rapid and sensitive detection of the pathogens responsible for posing significant threats to the kiwifruit industries. The RPA primer pairs tested in this study were highly specific for detection of B. dothidea and D. eres. The detection limits of our RPA assays were approximately two picograms of fungal genomic DNA. The optimal conditions for the RPA assays were determined to be at a temperature of 39℃ maintained for a minimum duration of 5 min. We were able to detect the pathogens from kiwifruit samples inoculated with a very small number of conidia. The RPA assays enabled specific, sensitive, and rapid detection of B. dothidea and D. eres, the primary pathogens responsible for kiwifruit rots in South Korea.

Rapid Detection Methods for Biogenic Amines in Foods (식품 내 바이오제닉아민 신속검출기술 개발 동향)

  • Lee, Jae-Ick;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Biogenic amines have been used as chemical indicators to estimate bacterial spoilage of foods, particularly fish and fish products, cheese, and fermented foods. So far many chromatography methods have been developed to detect biogenic amines in foods. Although these instrumental analyses exhibit good sensitivity, they cannot be used as rapid detection methods due to the chemical treatment of the samples and the time-consuming process involved. For the rapid and simple detection of biogenic amines, enzyme linked immunosorbent assay kits are commercially available. In addition, analytical systems with enzyme-based amperometric biosensor detection have been increasingly developed. The biosensors used to detect the biogenic amines are based on the action of either amine oxidases or amine dehydrogenases that catalyzes the oxidative deamination of biogenic amines to the corresponding aldehydes and ammonia. This review mainly focused on the principle, development, and applications of the detection methods for rapid detection of biogenic amines in foods.

Loop-mediated Isothermal Amplification assay for Detection of Candidatus Liberibacter Asiaticus, a Causal Agent of Citrus Huanglongbing

  • Choi, Cheol Woo;Hyun, Jae Wook;Hwang, Rok Yeon;Powell, Charles A
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Huanglongbing (HLB, Citrus greening disease) is one of the most devastating diseases that threaten citrus production worldwide. Although HLB presents systemically, low titer and uneven distribution of these bacteria within infected plants can make reliable detection difficult. It was known loop-mediated isothermal amplification (LAMP) method has the advantages of being highly specific, rapid, efficient, and laborsaving for detection of plant pathogens. We developed a new LAMP method targeting gene contained tandem repeat for more rapid and sensitive detection of Candidatus Liberibacter asiaticus (CLas), putative causal agent of the citrus huanglongbing. This new LAMP method was 10 folds more sensitive than conventional PCR in detecting the HLB pathogen and similar to that of real-time PCR in visual detection assay by adding SYBR Green I to mixture and 1% agarose gel electrophoresis. Positive reactions were achieved in reaction temperature 57, 60 and $62^{\circ}C$ but not $65^{\circ}C$. Although this LAMP method was not more sensitive than real-time PCR, it does not require a thermocycler for amplification or agarose gel electrophoresis for resolution. Thus, we expect that this LAMP method shows strong promise as a reliable, rapid, and cost-effective method of detecting the CLas in citrus and can be applied for rapid diagnosis is needed.

Comparative Performance Evaluations of Eye Detection algorithm (눈 검출 알고리즘에 대한 성능 비교 연구)

  • Gwon, Su-Yeong;Cho, Chul-Woo;Lee, Won-Oh;Lee, Hyeon-Chang;Park, Kang-Ryoung;Lee, Hee-Kyung;Cha, Ji-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.722-730
    • /
    • 2012
  • Recently, eye image information has been widely used for iris recognition or gaze detection in biometrics or human computer interaction. According as long distance camera-based system is increasing for user's convenience, the noises such as eyebrow, forehead and skin areas which can degrade the accuracy of eye detection are included in the captured image. And fast processing speed is also required in this system in addition to the high accuracy of eye detection. So, we compared the most widely used algorithms for eye detection such as AdaBoost eye detection algorithm, adaptive template matching+AdaBoost algorithm, CAMShift+AdaBoost algorithm and rapid eye detection method. And these methods were compared with images including light changes, naive eye and the cases wearing contact lens or eyeglasses in terms of accuracy and processing speed.

Ultra-Rapid Real-Time PCR for the Detection of Human Immunodeficiency Virus (HIV) (Ultra Rapid Real-Time PCR에 의한 Human Immunodeficiency Virus (HIV)의 신속진단법)

  • Lee, Dong-Woo;Kim, Eul-Hwan;Yoo, Mi-Sun;Han, Sang-Hoon;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2007
  • For the detection of Human Immunodeficiency Virus (HIV), multiple and ultra-rapid real-time PCR methods were developed. The target DNA sequences were deduced from HIV-1 specific 495bp partial env gene (gi_1184090) and from HIV-2 specific 294 bp partial env gene (gi_1332355), and were synthesized by using PCR-based gene synthesis on the reason of safety. Ultra-rapid real-time PCR was performed by $Genspector^{TM}$ using microchip-based, $1\;{\mu}l$ of reaction volume with extremely short time in each 3 step in PCR. The detection including DNA-amplification and melting temperature analysis was completed inner 15 minutes. The HIV-1 specific 117 bp-long and HIV-2 specific 119 bp-long PCR products were successfully amplified from minimum of template,2.3 molecules of each env gene. This kind of real-time PCR was designated as ultra-rapid real-time PCR in this study and it could be applied not only an alternative detection method against HIV, but also other pathogens using PCR-based detection.

A Study on Integrated Fire Alarm System for Safe Urban Transit (안전한 도시철도를 위한 통합 화재 경보 시스템 구축의 연구)

  • Chang, Il-Sik;Ahn, Tae-Ki;Jeon, Ji-Hye;Cho, Byung-Mok;Park, Goo-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.768-773
    • /
    • 2011
  • Today's urban transit system is regarded as the important public transportation service which saves passengers' time and provides the safety. Many researches focus on the rapid and protective responses that minimize the losses when dangerous situation occurs. In this paper we proposed the early fire detection and corresponding rapid response method in urban transit system by combining automatic fire detection for video input and the sensor system. The fire detection method consists of two parts, spark detection and smoke detection. At the spark detection, the RGB color of input video is converted into HSV color and the frame difference is obtained in temporal direction. The region with high R values is considered as fire region candidate and stepwise fire detection rule is applied to calculate its size. At the smoke detection stage, we used the smoke sensor network to secure the credibility of spark detection. The proposed system can be implemented at low prices. In the future work, we would improve the detection algorithm and the accuracy of sensor location in the network.

  • PDF

Development of a Fiber-Optic Biosensor for the Detection of Listeria monocytogenes (리스테리아 식중독균 검출을 위한 광학식 바이오센서 개발)

  • Kim G.;Choi K.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.128-134
    • /
    • 2006
  • Frequent outbreaks of foodborne illness demand the need for rapid and sensitive methods for detection of these pathogens. Recent development of biosensor technology has a great potential to meet the need for rapid and sensitive pathogens detection from foods. An antibody-based fiber-optic biosensor and an automated reagents supply system to detect Listeria monocytogenes were developed. The biosensor for detection of Listeria monocytogenes in PBS and bacteria spiked food samples was evaluated. The automated reagents supply system eliminated cumbersome sample and detection antibody injection procedures that had been done manually. The biosensor could detect $10^4$ cfu/ml of Listeria monocytogenes in PBS. By using the fiber-optic biosensor, $2x10^8$ cfu/ml of Listeria monocytogenes in the food samples were detectable.