• Title/Summary/Keyword: range sensor based localization

Search Result 91, Processing Time 0.027 seconds

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

Node Distribution-Based Localization for Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 노드 분포를 고려한 분산 위치 인식 기법 및 구현)

  • Han, Sang-Jin;Lee, Sung-Jin;Lee, Sang-Hoon;Park, Jong-Jun;Park, Sang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.832-844
    • /
    • 2008
  • Distributed localization algorithms are necessary for large-scale wireless sensor network applications. In this paper, we introduce an efficient node distribution based localization algorithm that emphasizes simple refinement and low system load for low-cost and low-rate wireless sensors. Each node adaptively chooses neighbor nodes for sensors, update its position estimate by minimizing a local cost function and then passes this update to the neighbor nodes. The update process considers a distribution of nodes for large-scale networks which have same density in a unit area for optimizing the system performance. Neighbor nodes are selected within a range which provides the smallest received signal strength error based on the real experiments. MATLAB simulation showed that the proposed algorithm is more accurate than trilateration and les complex than multidimensional scaling. The implementation on MicaZ using TinyOS-2.x confirmed the practicality of the proposed algorithm.

A GPS-less Framework for Localization and Coverage Maintenance in Wireless Sensor Networks

  • Mahjri, Imen;Dhraief, Amine;Belghith, Abdelfettah;Drira, Khalil;Mathkour, Hassan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.96-116
    • /
    • 2016
  • Sensing coverage is a fundamental issue for Wireless Sensor Networks (WSNs). Several coverage configuration protocols have been developed; most of them presume the availability of precise knowledge about each node location via GPS receivers. However, equipping each sensor node with a GPS is very expensive in terms of both energy and cost. On the other hand, several GPS-less localization algorithms that aim at obtaining nodes locations with a low cost have been proposed. Although their deep correlation, sensing coverage and localization have long been treated separately. In this paper, we analyze, design and evaluate a novel integrated framework providing both localization and coverage guarantees for WSNs. We integrate the well-known Coverage Configuration Protocol CCP with an improved version of the localization algorithm AT-Dist. We enhanced the original specification of AT-Dist in order to guarantee the necessary localization accuracy required by CCP. In our proposed framework, a few number of nodes are assumed to know their exact positions and dynamically vary their transmission ranges. The remaining sensors positions are derived, as accurately as possible, using this little initial location information. All nodes positions (exact and derived) are then used as an input for the coverage module. Extensive simulation results show that, even with a very low anchor density, our proposal reaches the same performance and efficiency as the ideal CCP based on complete and precise knowledge of sensors coordinates.

Cooperative Localization for Multiple Mobile Robots using Constraints Propagation Techniques on Intervals (제약 전파 기법을 적용한 다중 이동 로봇의 상호 협동 위치 추정)

  • Jo, Kyoung-Hwan;Jang, Choul-Soo;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.273-283
    • /
    • 2008
  • This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.

alibration of Infra-red Range Finder PBS-03JN Using Piecewise Linear Function Based on 2-D Grid Error (2차원 격자 오차 데이터 기반의 선형 보정 함수들을 이용한 적외선 레인지 파인더 PBS-03JN의 보정)

  • Kim, Jin-Baek;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.922-931
    • /
    • 2011
  • An efficient calibration algorithm for mobile robot localization using infrared range finder is proposed. A calibration is important to guarantee the performance of other algorithms which use sensor data because it is pre-process. We experimentally found that the infrared range finder PBS-03JN has error characteristics depending on both distance and scan angle. After obtaining 2-D grid error characteristic data on distance and scan angle, we proposed a simple and efficient calibration algorithm with a 2-D piecewise linear function set. The performance of our proposed calibration algorithm is verified by experiments and simulation.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm (Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위)

  • Fatihah, Ifa;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.9-17
    • /
    • 2014
  • This paper proposes a binary particle swarm optimization (BPSO) algorithm for distributed node localization in wireless sensor networks (WSNs). Each unknown node performs localization using the value of the measured distances from three or more neighboring anchors, i.e., nodes that know their location information. The node that is localized during the localization process is then used as another anchor for remaining nodes. The performances of particle swarm optimization (PSO) and BPSO in terms of localization error and computation time are compared by using simulations in Matlab. The simulation results indicate that PSO-based localization is more accurate. In contrast, BPSO algorithm performs faster for finding the location of unknown nodes for distributed localization. In addition, the effects of transmission range and number of anchor nodes on the localization error and computation time are investigated.

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM (3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

Localization and size estimation for breaks in nuclear power plants

  • Lin, Ting-Han;Chen, Ching;Wu, Shun-Chi;Wang, Te-Chuan;Ferng, Yuh-Ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.193-206
    • /
    • 2022
  • Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size estimation are proposed. A break event can be promptly detected and isolated after its occurrence by simultaneously monitoring changes in the sensing readings and by employing an interquartile range-based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can be located as the position whose lead field vector is most orthogonal to the noise subspace of that data block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural networks in selecting the best regression model for the available data, we can estimate the break size using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental results demonstrated that the MUSIC method could distinguish two near breaks. However, if the two breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes estimated by the proposed deep learning model were close to their actual values, but relative errors of more than 8% were seen while estimating small breaks' sizes.

Localization for Swarm Robots Using APIT (APIT를 이용한 군집로봇의 위치 측정)

  • Hao, Wu;Km, Jong-Sun;Ra, In-Ho;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1884-1885
    • /
    • 2011
  • In the wireless sensor network (WSN) environment, the approximate point-in-triangulation (APIT) is a kind of range-free localization algorithm. This algorithm provides high precision, however, the coverage rate is somewhat poor. In this paper, we propose an improved APIT algorithm for the localization of swarm robots, which is based on the received signal strength indicator (RSSI) and the center of gravity (COG) methods.

  • PDF