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a b s t r a c t

Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size
estimation are proposed. A break event can be promptly detected and isolated after its occurrence by
simultaneously monitoring changes in the sensing readings and by employing an interquartile range-
based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can
be located as the position whose lead field vector is most orthogonal to the noise subspace of that data
block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural
networks in selecting the best regression model for the available data, we can estimate the break size
using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed
algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental re-
sults demonstrated that the MUSIC method could distinguish two near breaks. However, if the two
breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes
estimated by the proposed deep learning model were close to their actual values, but relative errors of
more than 8% were seen while estimating small breaks’ sizes.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Break events in nuclear power plants (NPPs) can result in a loss
of coolant or pressure or reduction in coolant flow rate. Further-
more, they can also result in reactor core damage if not effectively
and instantly managed [1]. For example, the small-break loss-of-
coolant accident (LOCA) in Three Mile Island was caused by inad-
vertently opening a power-operated relief valve. This resulted in a
fuel meltdown in the reactor core owing to the operators failing to
recognize this break for considerable length of time and taking
inappropriate mitigation actions [2]. Thus, determining the break
location and size in its early stage is essential to preempt a break
event escalating into a severe accident [3]. One way to accomplish
this is to examine the data tendencies from primary plant sensors
by experienced operators. However, the high-level variation in the
sensor readings may hinder this task. Therefore, avoiding mistakes
in this manual approach is challenging, owing to the stressful and
chaotic circumstances operators face [4]. To address this concern, a
method that explores the relationship between a break event and
eering and Science, National
sinchu, 30013, Taiwan.
. Wu).

by Elsevier Korea LLC. This is an
the profile exhibiting among the NPP sensors for assessing the
location and size of a break can be an alternative [3].

Examples of the aforementioned method include works based
on artificial neural networks [5], probabilistic neural networks [6],
and support vector machines [3,7]. Break localization is treated as a
pattern recognition problem in these studies, as NPP sensors
exhibit varying profiles for breaks at different locations. The dif-
ferences among these cited studies include the classifiers employed
and themethods for extracting event features to reduce noise effect
and remove redundant information from multi-sensor data.
Furthermore, efforts have been made to estimate the break size
[3,8e10] for which approaches that provide continuous size esti-
mates are commonly used [3,8,10]. Although rarely reported, dis-
cretization of the break size into several size scales (e.g., 20%, 40%,
etc.) during size estimation has been employed [9]. Notably, the
occurrence of breaks in most of these studies was detected during
the triggering of the reactor scram [3,6,7]. Additionally, break
events can also be detected by continuously monitoring the pri-
mary sensing variables in the reactor to verify if the corresponding
thresholds are exceeded [5]. As the required information (e.g.,
break location and size) is obtained solely through analysis and
interpretation of acquired data, this method is known as a data-
driven method.
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Fig. 1. System diagram of the proposed scheme. The dashed rectangles enclose the
topics to be investigated in this study.
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In this study, we focus on applying data-driven methods for
break detection, isolation, localization, and size estimation in NPPs.
Fig. 1 shows how these methods are employed in the proposed
scheme. First, an algorithm that captures changes in the multi-
sensor data is formulated to detect abnormal events. Based on
Hotelling's T2 test [11,12], the algorithm allows the detection
threshold is determined without any empirical knowledge
regarding the sensors. An interquartile range (IQR)-based isolation
scheme is then applied to exclude a non-break event before local-
ization [13]. Unlike existing approaches that rely on pattern
recognition techniques for break localization, the proposed scheme
194
applies the Multiple Signal Classification (MUSIC) method to the
task. The MUSIC algorithm is based on the principle of subspace
analysis and has been used for frequency estimation [14], radio
direction finding [15], and brain source localization [16]. Given a set
of lead field vectors (LFVs), the MUSIC algorithm determines the
desired parameters (e.g., frequency of the signal of interest or
location of a break) by searching for the parameter whose LFV is the
most orthogonal to the noise subspace derived from the acquired
data [16]. Furthermore, the MUSIC method is known for its high-
resolution capability [17]; hence, two breaks having proper sizes
that are close to each other can be distinguished. A deep learning-
based approach is used for break size estimation. As the break size
is a real value, its estimation is considered to be a regression
problem. The simplest model for achieving this is linear regression.
However, obtaining a hyper-plane that can fit the “data” (i.e., break
sizes and sensor readings) is not easy, and the cost to estimate the
regression coefficients of higher-order models can be high. By
contrast, a deep neural network is a flexible model that adapts itself
to the shape of the available data [18e20], and it can automatically
select the best type of regression through training. Moreover, more
hidden layers can be added to increase its prediction reliability.
Finally, the network model weights can be efficiently determined
using the backpropagation gradient descent algorithm [21].

The remainder of this paper is structured as follows. In the next
section, we present approaches to detect and isolate a break. Sec-
tion 3 describes locating a break using the MUSIC algorithm. The
details of the deep learning model for break size estimation are
given in Section 4. Generation of all the required data and the re-
sults of detailed experiments are provided in Section 5. Finally,
some conclusions are presented in Section 6.
2. Break detection and isolation

An abnormal event (e.g., a break) in practice is not known until
some indicator is evoked so that its localization and the recovery
actions that follow can be commenced. This indicator might be the
reactor scram [3,6,7], although, in the case of a small break event, a
long time is required to trigger the scram. Any delay in recovery
may cause inadequate core cooling, leading to core damage [1]. To
enable prompt detection, continuously monitoring the reactor to
observe if there is any abnormal change in sensing readings might
be an alternative. Determining an abnormal change is achieved if a
sensing variable exceeds its preset threshold [5,22,23]. However,
such a threshold can be determined by empirical knowledge or the
evaluation of plant operators. Another approach is to formulate the
determination process as a hypothesis test. More specifically, x(t) is
the reading of a sensor at the time t, and whether it is taken under
normal operation (i.e., the null hypothesis H0) or an abnormal event
(i.e., the alternative hypothesis H1) is unknown:

H0 : x0ðtÞ ¼ sðtÞ þw0ðtÞ
H1 : x1ðtÞ ¼ sðtÞ þ dðtÞ þw1ðtÞ; (1)

The composites of x(t) are different under two hypotheses. The
additional term d(t) appearing under the alternative hypothesis H1
represents the signal that deviates from the normal operation
signal s(t) owing to an abnormal event. The white sensing noise
w0(t) and w1(t) represent the noise under the null and alternative
hypotheses, respectively. They are different but have the same
statistical properties. Through deciding either to reject the null
hypothesis in favor of the alternative or not reject it through, for
example, Student's t-test [24], the occurrence of an abnormal event
can be determined. Moreover, aided by the preset type I error (i.e.,
the null hypothesis wrongly rejected, typical values are 0.05 and
0.01), the two hypotheses can be distinguished without the need
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for subjective reasoning.
To increase detection sensitivity, readings from more than one

sensor are included. As such, the hypotheses in (1) should be
generalized as

H0 : x0ðtÞ ¼ sðtÞ þw0ðtÞ
H1 : x1ðtÞ ¼ sðtÞ þ dðtÞ þw1ðtÞ; (2)

where the vector x0ðtÞ ¼ ½ x01ðtÞ / x0m ðtÞ�T2ℝm�1 comprises
the readings of m sensors of the same type (e.g., pressure) under
the null hypothesis at the time t, and the other terms in (2) are
similarly defined. For the condition concerning the observation
vector x(t), Hotelling's T2 test is conducted. Note that Hotelling's T2

statistic T2ðtÞ ¼ ðxðtÞ � x
�
0ÞTG�1

0 ðxðtÞ�x
�
0Þ follows a c2 distribution

withm degrees of freedom, if x(t) is taken under the null hypothesis
[11,12]. Finally, the sample covariance matrix

G0 ¼
1
n

Xn
t¼1

�
x0ðtÞ� x0

��
x0ðtÞ � x0

�T

2ℝm�m; (3)

is estimated using n data vectors collected under the null hypoth-

esis, and x
�
0 is their ensemble average. The null hypothesis is

rejected (i.e., the occurrence of a break) if the T2(t) value of any
sensor type exceeds its corresponding threshold T2

a , which can be
determined under a given type [11,13].

The detection method mentioned above can detect any
abnormal event. To isolate the break events of interest, an IQR-
based isolation scheme is applied before localization. The idea is
to consider a non-break event as an outlier to exclude [13]. An IQR is
the difference between the first (Q1) and third (Q3) quartiles,
defined as the values in the provided data series that contain 25%
and 75% of the data below them, respectively. For the data to be
classified as an outlier, it must have a value that lies outside the
fence range from Q1 � 1:5� IQR to Q3 þ 1:5� IQR [25]. To assign a
data value to an abnormal event represented by the feature vector
f2ℝp�1, the logarithm of the likelihood function pðfjuBÞ of that
event belonging to the break event class uB is used, and it is esti-
mated by summing the Gaussian kernels centered at the nB break

event vectors fBi [26]:

pðfjuBÞ¼
1
nB

XnB

i¼1

1

ð2pÞp2sp
exp

0
@�

�
f � fBi

�T�
f � fBi

�
2s2

1
A; (4)

where s is the smooth parameter that determines the width of a
kernel function. Once obtained, the logarithm of the likelihood
function determines whether it belongs to the break event class, or
simply an outlier (i.e., a non-break event). Since it is unnecessary to
consider an abnormal event whose logarithm of the likelihood
function is higher than the upper value Q3 þ 1:5� IQR to be a non-
break event, we only check if the logarithm of the likelihood
function is below the lower value Q1 � 1:5� IQR. If so, this
abnormal event is regarded as a non-break event. Finally, the
feature vector used to represent an abnormal event for break event
isolation can be extracted by techniques, such as the time inte-
gration method [3,6,7].
Fig. 2. The LFVs of various break events derived from their flow rate data blocks. (a)
The LFVs of the breaks having the same size (1000 cm2) at the cold leg of loop 1, the hot
leg of loop 2, the crossover leg of loop 3, loop 1 of the main steam line, and loop 3 of
the main steam line. (b) The LFVs of a break at the cold leg of loop 1 with its size
varying from 100 cm2 (1.3048%), 400 cm2 (5.2192%), 900 cm2 (11.7432%), 1400 cm2

(18.2672%) to 2000 cm2 (26.0960%). (c) The LFVs of the breaks at the hot leg side of
steam generator tubes (loop 2) and cold leg side of steam generator tubes (loop 2) (i.e.,
Classes 15 and 16).
3. Break localization

3.1. Data stack and lead field vector

Using the model discussed in the previous section, the data
vectors collected at n time instants (starting at the time when
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Hotelling's T2 test-based approach detects the break) from m sen-
sors of the same type are stacked as anm � n data block, X ¼ [x (1)
… x(n)]. The value of m is typically less than n (e.g., m ¼ 9 and
n ¼ 61). We assume that for a set of sensors of the same type at
different locations in the NPP, a break is regarded as a “point
source,” whose correctness is demonstrated in Section 5.2. There-
fore, an appropriate mathematical model for X is

X¼ avT þW ¼ SþW; (5)

where a2ℝm�1 is referred to as the LFV of the break, v2Rn�1

corresponds to the “signal” that the break generates, andW2Rm�n

is composed of the background and sensor noise, assumed to be
white. Although the signal S is represented by anm � nmatrix, it is
the outer product of two vectors a and v, and thus S is of rank one.
An LFV is the response vector induced on the m-sensor array by a
break signal of unit magnitude. As the response of a break induced
on a sensor depends on the distance between them, breaks at
different locations will have different LFVs, as shown in Fig. 2(a). To
avoid scaling ambiguity in (5) (i.e., ca and v/c yield the same X as a
and v for an arbitrary constant, c), the following conditions are
employed: (1) ||a|| is equated to one, and (2) its first element
should be positive. Furthermore, the LFVs of a break having
different sizes are different, as shown in Fig. 2(b). When a break is
large enough, it will significantly affect the sensors that do not
respond when the break is small. This is found in Fig. 2(b) wherein
the LFV elements of the flow rate sensors 1, and 7-10 become
smaller owing to decreases in the flow rates at the sensor positions.



MUSIC Algorithm for Break Localization
Preparation Stage (LFV database construction)
Obtaining Np LFVs of the breaks having various sizes at several feasible locations

uses (9). The details of the break events used in this study are provided in
Table1.

Localization Stage
Let X represent the data block of an unknown break obtained by stacking the

data from sensors of a type (e.g., pressure);
(1) Calculate the SVD of X and construct UN;
(2) i ¼ 1;
(3) Repeat
(4)

Calculate g(i) using
aTi ai

aTi UNU
T
Nai

;

(5) i ¼ i þ 1;
(6) until i ¼ Np;
(7) The location estimate of the unknown break is determined to be the location

whose index bi having maximum g(i).
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As ||a|| ¼ 1, elements other than those previously mentioned in-
crease accordingly. Thus, wemay have the LFV of a break altered by
changing its size.

To obtain the LFV of a break, we determine the best approxi-
mation to the noise-free multi-sensor signal, S ¼ avT, provided if
data block X is available. Then, the break signal can be expressed as
v ¼ Fc, with F2Rn�n and c2ℝn�1 being a chosen orthonormal
basis (e.g., an identity matrix or a discrete wavelet transform basis
matrix) and the corresponding coefficient vector, respectively.
Next, data matrix X is vectorized to obtain the following [27]:

x¼ v5aþw¼Fc5 aþw¼ðF5aÞcþw; (6)

where5 denotes the Kronecker product, and x, s, andw aremn� 1
vectors formed by vectorizing X, S, and W, respectively. The LFV is
obtained by correlating the known signal template (i.e., s ¼ ðF 5

aÞc) with noisy data x:

ba¼ arg max
a

jjsTxjj s:t: jjajj ¼ 1: (7)

As

jjsTxjj2 ¼ jj½ðF5aÞc�Txjj2 ¼ cTyðaÞ½yðaÞ�Tc; (8)

where yðaÞ ¼ FTXTa, the closed-form solution for c (in terms of a)
is c ¼ yðaÞ, based on the Cauchy-Schwarz inequality. By replacing c

with FTXTa; the original optimization problem of (7) becomes:

ba¼ arg max
a

jjyðaÞjj ¼ arg max
a

jjaTXjj s:t: jjajj ¼ 1: (9)

The second equality holds owing to the vector norm-preserving
property of orthogonal matrices. As (9) is in a quadratic form, ba is
determined as the left singular vector of X corresponding to the
largest singular value. Once ba is obtained, coefficient vector c is

calculated as bc ¼ yðbaÞ ¼ FTXTba, and bv ¼ Fbc ¼ XTba, which is the
weighted sum of the rows ofXwith theweights being the entries ofba.

3.2. Multiple Signal Classification (MUSIC)

To locate a break, we first decompose its data block X using the
singular value decomposition (SVD) method as follows:

X¼USVT ¼ ½u1 / um �SVT ; (10)

where U is an m � m orthonormal matrix composed of a set of
orthonormal vectors, ui. Recall that u1, the left singular vector of X
corresponding to the largest singular value, is the optimal estimate
for the LFV of the unknown break. This indicates that the signal
resides in the subspace spanned by u1, which is usually called the
“signal subspace.” As the signal S is of rank one and resides in the
signal subspace spanned by u1, the subspace spanned by u2 … um

will have no signal but will contain noise. This latter subspace is
thus referred to as the “noise subspace.” As any other vector ui is
orthogonal to u1, u1 will also be orthogonal to the noise subspace.
Stacking all these vectors as UN ¼ ½u2 / um �, the MUSIC
method locates the break by searching for the locationwhose LFV is
the most orthogonal to UN, i.e.,

bi¼ argmax
i

gðiÞ ¼ argmax
i

aTi ai
aTi UNU

T
Nai

; (11)

where ai is the LFV of a break at the i-th feasible location.
In summary, provided that a set of LFVs of the breaks at several
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feasible locations are available, the estimated location of the un-
known break is found by observing the MUSIC spectrum, gðiÞ, as a
function of these feasible locations and then finding its maximum;
the location of the maximum is the estimated location for this
unknown break.

3.3. Detailed procedures

The procedures for break localization with the MUSIC method
are as follows.
4. Break size estimation

If a break is detected and localized, its size can be estimated
using the proposed. deep learning model, as shown in Fig. 3. This
convolutional neural network has alternating layers of different
types resembling that of the AlexNet [28], with its input being an
m � n data block. However, for applying AlexNet to break size
estimation, it still needs to be modified as the original network is
used for classification rather than regression for continuous values.
Furthermore, the data block is formed by stacking the readings
from the m selected sensors at n times. The only difference is that
the selected sensors need not be of the same type. However, to
mitigate the influence of magnitude imbalance in the readings of
diversified sensors on estimation performance, we normalize each
sensor's readings with its mean level under normal operation.
Treating the multi-sensor data as an “image” (i.e., a two-
dimensional data block) allows us to learn information using the
framework of deep learning without handcrafted information
extraction.

The convolution layers in the model shown in Fig. 3 are the core
building blocks, used to extract useful information from the input
data. Information extraction is achieved by convoluting the input
data block with a set of learnable kernels/filters. Moreover, several
“feature maps” that have different characteristics of the input data
can be obtained [29,30]. The numbers of kernels/filters vary from
64 to 256 from one convolution layer to another, with all their sizes
being 3 � 3. The outputs of convolution are passed through an
element-wise rectified linear unit (ReLU) function. It is a nonlinear
activation function that returns 0 if it receives any negative input;
otherwise, it returns the input itself. The ReLU function is known for
its capability to reduce the likelihood of the vanishing gradient
problem and increase the speed of learning [31]. The interleaved
max-pooling layers are used to down-sample the feature maps to



Fig. 3. The proposed deep learning model for break size estimation. This convolutional neural network has alternating layers of three types: convolution, pooling, and fully
connected layers. The model input is a two-dimensional data block. The blocks following by different layers are the feature maps of various sizes.
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be less sensitive to changes in the feature positions in the original
map, known as “translation invariance” [32]. The pooling operation
adopted in this study is max pooling, which extracts patches of size
1 � 2 from an input feature map and uses the maximum of these
extracted features as their respective output. The size of the pooling
operation allows a shift in the row direction of X owing to delayed
detection of a break, due to high noise level. In a situation where
the delay is significant, a larger size is chosen. As the selected
sensors are not physically swapped, a shift in the column direction
of X is not expected to occur, and thus a size of 1 is utilized. Unlike
in the convolution layers, in pooling layers there is no learnable
parameter. To regress the results of the convolution/pooling pro-
cess for the break size, two more fully connected layers of 64 and 1
neurons are added. As the name implies, neurons in a fully con-
nected layer have complete connections to all neurons in the pre-
vious layer. Finally, the activation function applied to the last fully
connected layer (i.e., the output layer) is the identity activation
function [33], and the activation function of the other fully con-
nected layer is still the ReLU function. Before the fully connected
layer, we use a global average pooling layer to flatten the output
featuremaps, which computes themean value for each featuremap
(256 in total) from the last pooling layer and supplies the results to
the following layer.

Finally, the kernels/filters in the convolution layers and the
weights in the fully connected layers are determined byminimizing
the size estimation error. In this study, we selected the mean ab-
solute error as the loss function and used the adaptive moment
estimation optimizer [21] to iterate on the Np training break events
for the optimal parameters. Note that these Np events are the same
as those for the LFV database construction.
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5. Experiments and discussions

5.1. Data generation and parameter settings

Eighteen feasible break locations and six non-break event cat-
egories considered in this study are listed in Table 1 The LFVs of 336
break events at the eighteen locations were calculated using (9) to
form the LFV database. The break sizes of.

Those belonging to LOCAs for constructing LFV database varied
with constant intervals of 5 cm2 and 100 cm2 in the ranges of
5 cm2e20 cm2 (i.e., in the range of small break LOCAs according to
the Maanshan final safety analysis report) and 100 cm2e2000 cm2,
respectively. Another way to represent the break size of a LOCA is to
normalize the size value by its possible maximum. This represen-
tation was also used in this study to express the break size of a
LOCA. The possible maximum break sizes for an LOCA at the cold
leg, hot leg, and crossover leg are 7664 cm2, 8523 cm2, and
9739 cm2, respectively, according to the Maanshan operator
training manual. The break sizes of those belonging to the main
steam line break (MSLB) varied from 5 cm2 to 2000 cm2 with a
constant interval of 100 cm2. With regard to the steam generator
tube rupture (SGTR), ten break sizes evenly spaced in the range
between 5 cm2 to 50 cm2 were considered. Additionally, 550 break
events whose sizes were randomly set in the same ranges were
generated for evaluating the efficacy of the proposed methods.
None of the breaks for performance evaluation had a size the same
as those used for LFV database construction. For non-break events,
three repetitions per class were simulated. Owing to the sensing
noise (added later), any two event repetitions in any of these classes
were not the same. All the simulations were performed in a



Table 1
Details of the breaks at 18 feasible locations and six non-break event categories used in this study. For a LOCA, the value in the parentheses is the normalized size.

Position Indices Event Type Break Position Break Size Information

1 LOCA Loop 1 Cold Leg 5 cm2e2000 cm2

(0.0652% ~ 26.0960%)
2 Hot Leg 5 cm2e2000 cm2

(0.0587% ~ 23.4659%)
3 Crossover Leg 5 cm2e2000 cm2

(0.0513% ~ 20.5360%)
4 Loop 2 Cold Leg 5 cm2e2000 cm2

(0.0652% ~ 26.0960%)
5 Hot Leg 5 cm2e2000 cm2

(0.0587% ~ 23.4659%)
6 Crossover Leg 5 cm2e2000 cm2

(0.0513% ~ 20.5360%)
7 Loop 3 Cold Leg 5 cm2e2000 cm2

(0.0652% ~ 26.0960%)
8 Hot Leg 5 cm2e2000 cm2

(0.0587% ~ 23.4659%)
9 Crossover Leg 5 cm2e2000 cm2

(0.0513% ~ 20.5360%)
10 MSLB Loop 1 5e2000 cm2

11 Loop 2
12 Loop 3
13 SGTR Loop 1 Hot Leg Side of SG tubes 5e50 cm2

14 Cold Leg Side of SG tubes
15 Loop 2 Hot Leg Side of SG tubes
16 Cold Leg Side of SG tubes
17 Loop 3 Hot Leg Side of SG tubes
18 Cold Leg Side of SG tubes

Non-Break Events

NB1 Main Steam Isolation Valve Failure (Loop 1)
NB2 Main Steam Isolation Valve Failure (Loop 2)
NB3 Main Steam Isolation Valve Failure (Loop 3)
NB4 Loss of Main Feedwater
NB5 Reactor Coolant Pump Trip
NB6 All of Reactor Coolant Pump Trip

Table 2
List of the 31 sensors used in this study.

Sensor type Sensor name Unit

Water Level S/G 1 downcomer water level m
S/G 2 downcomer water level
S/G 3 downcomer water level
Water level In pressurizer

Pressure Pressure in loop 1 S/G Pa
Pressure in loop 2 S/G
Pressure in loop 3 S/G
RCS pressure
Pressurizer pressure
Pressure in loop 1 hot leg
Pressure in loop 3 hot leg

Temperature Temperature of gas in pressurizer K
Temperature of water in pressurizer
Water temperature in loop 1 cold leg
Water temperature in loop 1 hot leg
Water temperature in loop 2 cold leg
Water temperature in loop 2 hot leg
Water temperature in loop 3 cold leg
Water temperature in loop 3 hot leg

Flow Rate Average flow in loop 1 cold leg kg/s
Average flow in loop 2 cold leg
Average flow in loop 3 cold leg
Water flow into loop 1 cold leg
Water flow into loop 2 cold leg
Water flow into loop 3 cold leg
Water flow into loop 1 hot leg
Water flow into loop 2 hot leg
Water flow into loop 3 hot leg
Water flow out from loop 1 hot leg
Water flow out from loop 2 hot leg
Water flow out from loop 3 hot leg
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simulator of Taiwan's Maanshan NPP, which is implemented using
the Modular Accident Analysis Program Version 5 (MAAP5) [34].
Note that using the data produced by the computer codes such as
MAAP5 for developing NPP online monitoring systems is not un-
common [3,6,35e37]. The advantage of utilizing these codes lies in
their ability to simulate various LOCA and non-LOCA transients,
lowering the burden of preparing relevant data while developing a
monitoring system and allowing the researchers to concentrate
more on proposing feasible algorithms. However, a modification is
inevitable before applying these proposed schemes to a real NPP as
the simulated data may deviate from those acquired in NPPs under
an abnormal event of interest. The signals of 31 sensors covering
four physical quantities were recorded under a sampling rate of
1 Hz. The details of these sensors are summarized in Table 2. A plant
sensor was included for the analysis only when the sensing variable
could be measured, and the sensor could appear in the NPP. To let
the evaluation be realistic, sensing noise modeled as white
Gaussian noisewas added to each sensor's data. The noise level (i.e.,
sw) was specified by the signal-to-noise ratio defined as

SNRdB ¼ 20 log 10

�
RMS

�
sij
�

sw

�
; (12)

where RMSðsijÞ is the root-mean-square value of the data vector
from the jth sensor of the break event i. We set the SNR to be 40 dB.
Finally, the network model for break size estimationwas trained on
TensorFlow 1.10.0 with the CUDA 9.0 Toolkit and cuDNN v7.3.1 on
the computing platform: ASUS E500 G5 workstation with Intel
Core™ i7-8700 CPU, GeForce RTX 2080, and 8 GB RAM. During
training, a part of 336 break events (20% in this study) was
198
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considered as the validation set, and early stopping was used to halt
the training to prevent overfitting. The batch size was 512.
5.2. Results and discussions

We first demonstrate the efficacy of Hotelling's T2 test-based
and the IQR-based approaches in detecting and isolating the
testing events. As previously mentioned, an abnormal event is
detected if the T2(t) value of any sensor type exceeds its corre-
sponding T2

a value. For a 0.01 significance level, the T2
a values for the
Table 3
Maximum detection times (s) of different abnormal events with different types of senso

Position: 1

Hotelling's T2 test-based detection Scram
W P T F
6 4 72 31 71

Position: 2

Hotelling's T2 test-based detection Scram
W P T F
14 14 207 223 218

Position: 3

Hotelling's T2 test-based detection Scram
W P T F
7 5 81 24 85

Position: 4

Hotelling's T2 test-based detection Scram
W P T F
7 5 87 106 100

Position: 5

Hotelling's T2 test-based detection Scram
W P T F
7 5 100 108 102

Position: 6

Hotelling's T2 test-based detection Scram
W P T F
8 9 117 119 114

Position: 7

Hotelling's T2 test-based detection Scram
W P T F
7 5 74 55 95

Position: 8

Hotelling's T2 test-based detection Scram
W P T F
7 3 112 35 104

Position: 9

Hotelling's T2 test-based detection Scram
W P T F
12 7 135 166 162

Position: NB1

Hotelling's T2 test-based detection Scram
W P T F
3 4 30 7 >1000

Position: NB3

Hotelling's T2 test-based detection Scram
W P T F
3 4 31 8 >1000

Position: NB5

Hotelling's T2 test-based detection Scram
W P T F
5 4 17 1 4
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water level, pressure, temperature, and flow rate sensors were 9.5,
14.08, 15.53, and 21.06, respectively. The maximum differences
between the occurrence and detection of a break (i.e., the detection
times) are listed in Table 3. Comparing the event detection using
the data vectors of different sensor types, we noticed that the
pressure sensors were more sensitive in detecting the break events
than other types of sensors.

Moreover, although the breaks occurred at different locations
with different break sizes, they were all detected quickly. For
example, a small break LOCA at Position 1 having size 15 cm2 was
rs and their corresponding scram times.

Position: 10

Hotelling's T2 test-based detection Scram
W P T F
29 9 575 83 >1000

Position: 11

Hotelling's T2 test-based detection Scram
W P T F
21 7 511 60 >1000

Position: 12

Hotelling's T2 test-based detection Scram
W P T F
49 19 191 271 >1000

Position: 13

Hotelling's T2 test-based detection Scram
W P T F
29 32 394 469 432

Position: 14

Hotelling's T2 test-based detection Scram
W P T F
19 18 158 222 214

Position: 15

Hotelling's T2 test-based detection Scram
W P T F
20 20 352 357 214

Position: 16

Hotelling's T2 test-based detection Scram
W P T F
15 12 165 174 166

Position: 17

Hotelling's T2 test-based detection Scram
W P T F
24 25 315 375 368

Position: 18

Hotelling's T2 test-based detection Scram
W P T F
13 13 172 170 163

Position: NB2

Hotelling's T2 test-based detection Scram
W P T F
2 3 27 9 >1000

Position: NB4

Hotelling's T2 test-based detection Scram
W P T F
5 21 81 50 86

Position: NB6

Hotelling's T2 test-based detection Scram
W P T F
5 4 16 1 4



Fig. 4. Logarithm of the likelihood functions of 550 testing breaking events and 18 testing non-break events: (a) LOCA, (b) MSLB, (c) SGTR, and (d) non-break events.
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detected in 4 s. This indicates that the continuous monitoring fa-
cilitates prompt break detection even when its size is small. The
reactor scram times (concerning the break occurrence times) cor-
responding to these break events were also included for compari-
son. It is found that for almost all the events, the scram was
triggered after their detection by Hotelling's T2 test-based
approach. Moreover, for some events (e.g., MSLBs at Positions 10,
11, and 12), the scram could not be triggered in 1000 s, which was
the simulation period for each break event.

Next, the efficacy of the break isolation scheme was investi-
gated. The feature vector used to represent an abnormal event was
extracted using time integration from a 60-s data segment sensor-
by-sensor. The data were also collected from the time Hotelling's T2

test-based approach detected the event. The feature vectors fBi of
the break events of interest, containing LOCAs, MSLBs, and SGTRs,
were calculated similarly using the data of the events used for
constructing the LFV database. We used a leave-one-out strategy to
calculate the logarithm of the likelihood functions for evaluating
the required parameters of the IQR-based isolation scheme, in
which one of the feature vectors was selected as f, and the likeli-
hood function (4) was evaluated with the remaining feature vec-
tors. The obtained IQR was 1.1615, resulting in a threshold
of �4.5727. Finally, the smooth parameter was 0.08. We depict the
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logarithm of the likelihood functions of 550 testing break events
and 18 non-break events in Fig. 4. As found, all the break events had
their logarithm of the likelihood functions well above the
threshold. On the contrary, those of the non-break events lay below
the threshold so that they could be successfully excluded.

We now investigate the efficacy of the MUSIC method in
locating a break in the NPP. Fig. 5 depicts the MUSIC spectra ob-
tained using (11) when the breaks occur at the hot leg of loop 3 and
the cold leg side of the steam generator tubes (loop 2). Fig. 5(a) is a
favorable case, where a large peak in the spectrum is seen at index
i ¼ 174, corresponding to the location index of the unknown break
(i.e., at the hot leg of loop 3). For (11) to hold, the LFV of the un-
known break must occupy a subspace in the m-dimensional space
that is completely different from those of the breaks at other
feasible locations. However, this may not always hold. In practice,
the signal subspaces of the breaks at different locations may not be
as disjoint as in the previous example. This is particularly truewhen
the two breaks are close to each other. Consequently, when the data
block of a break that shares a common subspace with others is
presented, the resulting MUSIC spectrum can lead to ambiguous
results, as shown in Fig. 5(b), where the differences in the g(i) value
of the correct location index and those of other locations become
small. When this happens, the MUSIC method incorrectly locates
the unknown break, although the index of the highest peak shown



Fig. 5. The MUSIC spectra of different break events obtained using (11): (a) at the hot leg of loop 3, (b) at the cold leg side of the steam generator tubes (loop 2), (c) at the cold leg
side of the steam generator tubes (loop 2) while working with a sparse LFV database, and (d) at the hot leg of loop 2 with the spectrum generated using the temperature data block.

Table 4
Accuracy of locating the 550 testing break events using the MUSIC method and the PNN-based approach.

Correctness Rate (%) Size Interval

Original Doubled Quadrupled

MUSIC Flow Rate LOCA 99.73 99.19 95.41
MSLB 100 97.5 95
SGTR 96.67 91.67 68.33

Pressure LOCA 31.89 26.76 21.35
MSLB 100 100 98.33
SGTR 58.33 53.33 43.33

Temperature LOCA 32.16 32.43 25.68
MSLB 100 99.17 95
SGTR 45 45 43.33

Water Level LOCA 14.05 13.78 15.14
MSLB 93.33 90 71.67
SGTR 70 61.67 48.33

PNN Flow Rate LOCA 94.86 94.05 84.32
MSLB 51.67 51.67 51.67
SGTR 65 66.67 65

Pressure LOCA 47.84 40 34.59
MSLB 51.67 51.67 51.67
SGTR 60 55 36.67

Temperature LOCA 37.03 34.32 30.54
MSLB 51.67 51.67 51.67
SGTR 21.67 25 21.67

Water Level LOCA 17.57 17.03 13.51
MSLB 41.67 40.83 31.67
SGTR 65 61.67 66.67

All LOCA 91.62 85.95 78.38
MSLB 51.67 51.67 51.67
SGTR 65 70 63.33
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in Fig. 5(b) still corresponds to the unknown break (i ¼ 309). We
summarize the results of locating the 550 testing breaks using the
MUSIC method in Table 4. We also include the localization results
using the pattern recognition-based approach of Na et al. (2004) [6]
for comparison, where a probabilistic neural network (PNN) clas-
sifies the event features extracted by the integrator to determine
201
the location of a break. The reactor scram was adopted to indicate
an event (also functions as the starting time of integration). The
data duration for each sensor was still 60 s (i.e., n¼ 61). The studies
of event identification (e.g. Refs. [6,7]) also comprise selecting a 60-
s duration. In these studies, a 60-s duration was selected, after the
reactor scram, as safety systems, such as the safety injection system



Fig. 6. The data blocks (blue solid lines) of a LOCA occurred at the hot leg of loop 1 and its reconstructed noise-free signals babvT (red dashed lines). (a) Flow rate data block and (b)
Pressure data block.

T.-H. Lin, C. Chen, S.-C. Wu et al. Nuclear Engineering and Technology 54 (2022) 193e206
and auxiliary feedwater system, were not actuated. We followed
their setting in this study. As can be seen, using the MUSIC method
with the data blocks of flow rate, almost all the break events could
be correctly located regardless of their locations and sizes. We also
noticed that when the two breaks were close to each other, the
pattern recognition-based approach could not distinguish them,
indicating that this approach is error-prone (e.g., misclassifying a
break at the cold leg side of the steam generator tubes as at the hot
leg side of the steam generator tubes). Furthermore, the accuracy
for locating the MSLBs using the PNN-based approach was low
because a small MSLB could not trigger a scram in the simulation
period; hence, the subsequent localization step was not activated.
This also demonstrated the significance of an adequate detection
scheme in break event mitigation. Furthermore, only when the
sensors of all types were considered simultaneously, the PNN-
based approach presented an acceptable localization accuracy.
However, if two breaks are not only close to each other but also of
202
small sizes, the MUSIC method might still incorrectly locate them.
For example, the errors made by the MUSIC method were incor-
rectly locating a small break LOCA at the crossover leg of loop 3 as
SGTR at the hot leg side of steam generator tubes (loop 3) (i.e.,
locating a break event belonging to Class 9 as Class 17) or an SGTR at
the hot leg side of steam generator tubes to be at the cold leg side of
steam generator tubes (i.e., locating a break event belonging to
Class 15 as Class 16). The proximity of these breaks and their small
sizes caused the LFVs of the breaks to be nearly the same, as shown
in Fig. 2(c), thus making the localization using the MUSIC method
difficult. However, the same difficulty was also seen in the PNN-
based approach.

As mentioned earlier, breaks of different sizes may have
different LFVs (e.g., those shown in Fig. 2(b)) even when they are at
the same location. Thus, when building up the LFV database, the
size of a break at a given location should be varied to factor this. The
break sizes used during the database construction were evenly



Table 5
Mean residuals and mean relative errors for the size estimation of 550 testing break events. Three size intervals were used. For a LOCA, the value in the parentheses is the
normalized size.

Size Interval Original Setting Doubled Quadrupled

Event Info.

Event Type Pos. No. Residual Re. Err. Residual Re. Err. Residual Re. Err.

(cm2) (%) (cm2) (%) (cm2) (%)

LOCA 1 19.46 2.67 38.43 9.40 82.60 25.26
(0.2539%) (0.5014%) (1.0778%)

2 11.43 1.29 18.00 2.17 46.94 7.76
(0.1341%) (0.2112%) (0.5508%)

3 9.22 1.99 14.94 3.48 37.84 14.23
(0.0947%) (0.1534%) (0.3885%)

4 18.72 4.71 44.07 11.17 73.51 27.03
(0.2443%) (0.5751%) (0.9592%)

5 18.41 2.19 23.10 6.05 54.24 20.02
(0.2160%) (0.2710%) (0.6364%)

6 9.48 1.29 12.65 1.99 42.74 9.46
(0.0974%) (0.1229%) (0.4389%)

7 19.51 1.99 29.57 6.06 60.08 20.89
(0.2546%) (0.3858%) (0.7840%)

8 27.03 2.85 40.50 8.53 125.40 47.29
(0.3172%) (0.4752%) (1.4713%)

9 14.68 4.11 18.16 4.53 40.37 16.32
(0.1507%) (0.1865%) (0.4146%)

MSLB 10 8.94 1.17 16.41 5.50 31.60 8.46
11 11.67 1.51 18.76 3.94 60.07 15.29
12 13.94 4.93 23.47 7.81 49.04 12.12

SGTR 13 0.48 1.23 1.09 5.03 8.35 26.06
14 0.44 2.06 0.75 3.29 5.36 27.91
15 0.42 3.99 0.97 7.11 4.94 33.94
16 0.49 2.75 1.71 10.60 5.09 35.58
17 0.28 1.82 1.03 8.19 5.20 28.65
18 0.44 1.68 2.11 8.67 9.57 39.53
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spaced; however, the adopted size interval affected the localization
accuracy. To illustrate how the localization accuracy was influ-
enced, we doubled and quadrupled the intervals to reconstruct two
sparse LFV databases for the test. Note that only 168 and 81 break
events remained after doubling and quadrupling the size intervals.
We list the localization results using these two sparse LFV data-
bases in Table 4. The advantage of working with the sparse LFV
databases was that an unknown break could be located only in half
or one-fourth of the time originally required. However, the locali-
zation accuracy reduced as the size interval increased, as shown in
Table 4. The errors increased owing to incorrectly locating nearby
breaks as the discriminant power of the MUSIC method reduced
whenworking with the sparse LFV databases. This was particularly
true when locating SGTRs, with the success rate being as low as
68.33% using the flow rate data blocks. Fig. 5(c) shows the MUSIC
spectrum using the sparse LFV database. The test break event was
the same as that in Fig. 5(b). However, the highest peak in this case
appeared at index i ¼ 300 rather than at i ¼ 309, indicating
incorrect localization. Therefore, factors (i.e., break location and
size) that affect the LFVs must be carefully considered for the
MUSIC method to be efficacious.

Finally, with the data blocks of other sensor types, the MUSIC
method performed ineffectively, as shown in Table 4. To verify the
reason for this poor performance, the correctness of the rank-one
assumption for these data blocks was assessed. If the assumption
holds, the break data block should be similar to the estimated

noise-free signals, babvT . This is seen in Fig. 6(a), where the estimated
noise-free signals (i.e., red dashed lines) are nearly on top of the
flow rate data block (i.e., the blue solid lines) of a LOCA at the hot leg
of loop 1. This trend was also found in the flow rate data blocks of
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other break events. In other sensor types, significant deviations
between the data blocks and their rank-one noise-free signals could
be seen, as shown in Fig. 6(b). Because of this violation of the
assumption, the LFVs of a break obtained using (9) could not well
represent the break, and the resulting MUSIC spectrum became
“spiky” (e.g., the spectrum obtained using the temperature block
shown in Fig. 5(d)), causing poor localization accuracy.

We finally evaluated the efficacy of the proposed deep learning
model for break size estimation. The model input was the data
block composed of the normalized readings from all the sensors
regardless of their types. The data duration used for estimationwas
still 60 s. Note that the break events used to train the size estima-
tion models for the 18 break event categories were the same as
those for the LFV database construction. For each event category,
the training process was repeated ten times for ten different model
realizations. When an unknown break was located, its corre-
sponding ten models were used to estimate its size. The residual,
pull (i.e., residual/model uncertainty) and relative error were
employed to quantify the estimation performance of these models
[38,39], where the error was defined as the absolute difference
between the actual and estimated sizes. We summarize the size
estimation results for the 550 testing break event in Table 5. The
maximum mean residual was 27.03 cm2 (0.3172%) for a LOCA that
occurred at the hot leg of loop 3. The value in the parentheses is its
normalized size. Although this residual appeared to be significant,
the corresponding mean relative error was 2.85%. Based on the size
estimation results of LOCAs shown in Fig. 7, we observed that the
residual increased with the break size, whereas the relative errors
decreased. From the cumulative distribution function (CDF) of their
relative errors, we noticed that more than 95% of the testing events
had relative errors less than 8%. Those having relative errors of



Fig. 7. Size estimation residuals, pulls, and relative errors for various break events. LOCA: (a), (d) and (g). MSLB: (b), (e) and (h). SGTR: (c), (f) and (i). Cumulative distribution
functions (CDFs) of relative errors: (j).
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more than 8% were owing to the estimation of LOCAs with small
sizes. This is reasonable because a small estimation error can lead to
a significant relative error when the actual size is small. In contrast,
a significant estimation error can only result in a small relative error
when the actual break size is large. Finally, for some of the break
events, the pulls were significant as their ten size estimation
models could provide size estimation results with limited vari-
ances. For the break events of MSLB and SGTR, the situations were
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similar, as shown in Fig. 7. The maximum mean residuals for these
two event categories were 13.94 cm2 and 0.49 cm2, respectively. As
for the mean relative errors, the maximum values were 4.93% and
3.99%, respectively, as listed in Table 5. Furthermore, doubling or
quadrupling the size interval also led to increases in estimation
errors as the break events available for training the size estimation
models were reduced; hence, it was not easy to obtain applicable
models in those circumstances.



Table 6
Size estimation performance of the proposed approach and the SVR method. For a LOCA, the value in the parentheses is the normalized size.

Size Estimation Methods Proposed Approach SVR

Detection Methods Hotelling's T2 test Reactor Scram Hotelling's T2 test

Localization Methods MUSIC PNN Localized Correctly Localized Correctly

Mean Residual (cm2)
LOCA 16.44 145.00 129.17 126.82

(0.1959%) (1.7472%) (1.5411%) (1.5101%)
MSLB 11.52 121.86 121.86 119.31
SGTR 0.42 5.30 3.51 3.53

Mean Relative Error (%)
LOCA 2.30 33.39 29.12 28.29
MSLB 2.54 10.31 10.30 8.76
SGTR 2.26 34.41 23.28 23.43
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Additionally, we implemented the break size estimation
approach of Na et al. (2008) [3] for comparison wherein, to regress
the event features extracted by the integrator for the break size, a
support vector regression (SVR) model was used. Note that the
features used formodel trainingwere the same as those for training
the PNN classifier for break localization presented previously, and
18 size estimation models were obtained for the 18 break event
categories. If PNN located the unknown break, its corresponding
model was used to estimate the break size. Table 6 summarizes the
size estimation performance of the proposed scheme and the SVR
model. The results of estimating 550 testing breaks were divided
into three categories (LOCA, MSLB, and SGTR), whosemean residual
and mean relative error were calculated accordingly. As can be
seen, the mean residual and mean relative error of SVR were larger
than those of the proposed approach regardless of the event cate-
gories. Three possible reasons for the poor performance of the SVR
method are as follows. First, a wrong size estimation model was
adopted due to incorrectly locating the break by PNN. To verify this,
we evaluated each break with its corresponding size estimation
SVR model (i.e., assuming that the break event was localized
correctly). The mean residuals and mean relative errors of the
different event types decreased, as shown in Table 6. Second, the
data used for feature extraction were collected after the reactor
scram for 60 s in Ref. [3]. In this period, the sensing readings varied
less. The features in input data that help estimate the break size
were thus less informative, leading to poor estimation results. This
was demonstrated by estimating the break size using the data
considered after detecting the break using Hotelling's T2 test-based
scheme, and the errors were further decreased, as shown in Table 6.
Lastly, the integrator was a low pass filter, and the information that
could help estimate the break size was substantially discarded after
feature extraction. Thus, the errors in the break size estimation
were still significant.

Finally, we summarize the strengths and weaknesses of this
work as follows:

� Instead of using the reactor scram as an indicator for the
occurrence of an abnormal event, Hotelling's T2 test-based
approach simultaneously monitored changes in the readings
of multiple NPP sensors to attain prompt event detection.
Moreover, having the logarithm of their likelihood functions
well above the preset threshold determined by the IQR method,
the break events were correctly isolated for localization.

� The MUSIC method was able to distinguish two close breaks
(e.g., LOCAs at the cold and hot legs of any loop), which was
difficult to attain using the PNN-based approach. However, if
two breaks were not only close to each other but also of small
sizes, the MUSICmethodmight still wrongly locate them. Unlike
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the PNN-based approach, whose discriminant power is dictated
by the extracted features, the discriminant power of the MUSIC
method comes from the LFV database. Therefore, factors that
affect the LFVs must be carefully considered for the MUSIC
method to be efficacious.

� The break sizes estimated by the proposed deep learning model
were close to the actual values, having estimation errors less
than those obtained using the SVR-based method. Furthermore,
information extraction in the proposed model is achieved by
convoluting the input data block with a set of learnable kernels/
filters without the need for handcrafted feature extraction.
However, the estimation of small-size breaks had relative errors
of more than 8%, which requires an alternative approach to
address.

6. Conclusion

Several algorithms that enable detection, isolation, localization,
and size estimation of breaks in NPPs were presented, with their
performance being evaluated using the data generated by a simu-
lator in Taiwan's Maanshan NPP. Based on Hotelling's T2 test and the
IQR-based isolation scheme, it was observed that a break event
could be promptly detected by simultaneously monitoring the
changes in the readings of multiple NPP sensors and isolating
before localization. For a test of 18 break event categories with a
total of 550 testing events, the MUSIC method achieved a success
rate of at least 96.67% for break location. Two closely located breaks
could be distinguished by employing the MUSIC method; however,
mislocalization could happen if they were close and of small sizes.
In addition, since the discriminant power of the MUSIC method
comes from the LFV database, factors that affect the LFVs must be
appropriately considered. Owing to the ability of a deep learning
model to adapt itself to the shape of the available data, the break
size estimates came closer to their actual values. Although the
mean relative error obtained while estimating the testing breaks'
sizes using the proposed network model was less than 4.93%, the
size estimates of the small-size breaks had relative errors of more
than 8%, leading to the need for an alternative approach to address
this issue.
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