• Title/Summary/Keyword: random vectors

Search Result 150, Processing Time 0.022 seconds

The Convergence Characteristics of The Time- Averaged Distortion in Vector Quantization: Part I. Theory Based on The Law of Large Numbers (벡터 양자화에서 시간 평균 왜곡치의 수렴 특성 I. 대수 법칙에 근거한 이론)

  • 김동식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.107-115
    • /
    • 1996
  • The average distortio of the vector quantizer is calcualted using a probability function F of the input source for a given codebook. But, since the input source is unknown in geneal, using the sample vectors that is realized from a random vector having probability function F, a time-average opeation is employed so as to obtain an approximation of the average distortion. In this case the size of the smple set should be large so that the sample vectors represent true F reliably. The theoretical inspection about the approximation, however, is not perfomed rigorously. Thus one might use the time-average distortion without any verification of the approximation. In this paper, the convergence characteristics of the time-average distortions are theoretically investigated when the size of sample vectors or the size of codebook gets large. It has been revealed that if codebook size is large enough, then small sample set is enough to obtain the average distortion by approximatio of the calculated tiem-averaged distortion. Experimental results on synthetic data, which are supporting the analysis, are also provided and discussed.

  • PDF

Joint-characteristic Function of the First- and Second-order Polarization-mode-dispersion Vectors in Linearly Birefringent Optical Fibers

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.228-234
    • /
    • 2010
  • This paper presents the joint characteristic function of the first- and second-order polarization-modedispersion (PMD) vectors in installed optical fibers that are almost linearly birefringent. The joint characteristic function is a Fourier transform of the joint probability density function of these PMD vectors. We regard the random fiber birefringence components as white Gaussian processes and use a Fokker-Planck method. In the limit of a large transmission distance, our joint characteristic function agrees with the previous joint characteristic function obtained for highly birefringent fibers. However, their differences can be noticeable for practical transmission distances.

Visual Object Tracking by Using Multiple Random Walkers (다중 랜덤 워커를 이용한 객체 추적 기법)

  • Mun, Juhyeok;Kim, Han-Ul;Kim, Chang-Su
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.913-919
    • /
    • 2016
  • In this paper, we propose the visual tracking algorithm that takes advantage of multiple random walkers. We first show the tracking method based on support vector machine as [1] and suggest a method that suppresses feature vectors extracted from backgrounds while preserve features vectors from foregrounds. We also show how to discriminate between foregrounds and backgrounds. Learned by reducing influences of backgrounds, support vector machine can clearly distinguish foregrounds and backgrounds from the image whose target objects are similar to backgrounds and occluded by another object. Thus, the algorithm can track target objects well. Furthermore, we introduce a simple method improving tracking speed. Finally, experiments validate that proposed algorithm yield better performance than the state-of-the-art trackers on the widely-used benchmark dataset with high speed.

Local Limit Theorem for Large Deviations

  • So, Beong-Soo;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.2
    • /
    • pp.81-86
    • /
    • 1984
  • Under the i.i.d. hypothesis, authors (1982, 1984) proved some local limit theorems both for the continuous case and for the lattice case. In this paper, results are extended to the case where the random vectors are not identically distributed.

  • PDF

On the Distribution of the Scaled Residuals under Multivariate Normal Distributions

  • Cheolyong Park
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.591-597
    • /
    • 1998
  • We prove (at least empirically) that some forms of the scaled residuals calculated from i.i.d. multivariate normal random vectors are ancillary. We further show that, if the scaled residuals are ancillary, then they have the same distribution whatever form of rotation is rosed to remove sample correlations.

  • PDF

DEPENDENCE IN M A MODELS WITH STOCHASTIC PROCESSES

  • KIM, TAE-SUNG;BAEK, JONG-IL
    • Honam Mathematical Journal
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 1993
  • In this paper we present of a class infinite M A (moving-average) sequences of multivariate random vectors. We use the theory of positive dependence to show that in a variety of cases the classes of M A sequences are associated. We then apply the association to establish some probability bounds and moment inequalities for multivariate processes.

  • PDF

A NOTE ON FELLER`S THEOREM

  • Hong, dug-Hun
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.425-428
    • /
    • 1999
  • In this note we have generalization of Feller`s theorem to real separable Banach spaces, from which we obtain easily Chow-Robbins “fair" games problem in the Banach spaces.aces.

  • PDF

A CENTRAL LIMIT THEOREM FOR THE STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VICTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Chung, Sung-Mo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.95-102
    • /
    • 2002
  • A central limit theorem is obtained for a stationary multivariate linear process of the form (equation omitted), where { $Z_{t}$} is a sequence of strictly stationary m-dimensional associated random vectors with E $Z_{t}$ = O and E∥ $Z_{t}$$^2$ < $\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (equation omitted) and (equation omitted).ted)..ted).).