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A CENTRAL LIMIT THEOREM FOR THE
STATIONARY MULTIVARIATE LINEAR PROCESS
GENERATED BY ASSOCIATED RANDOM VECTORS

TAE-SUNG KM, MI-HwA Ko, AND SUNG-Mo CHUNG

ABSTRACT. A central limit theorem is obtained for a stationary
multivariate linear process of the form X; = >°°7 | AuZt—v, Where
{Z.} is a sequence of strictly stationary m-dimensional associated
random vectors with EZ; = Q and E||Z:||* < co and {Au} is a se-
quence of coefficient matrices with 3°°0  [|Au|| < coand } 07 Au #

Omxm'

1. Introduction and main result

A finite sequence {Y1,---,Ym,} of random variables is said to be as-
sociated if for the coordinatewise increasing functions f,g: R™ — R
(1) COV(f(Yl, »Ym)ag()/la 7Ym)) 207

where the covariance is defined. An infinite family of random vari-
ables is associated if every finite subfamily is associated. This prevalent
positive dependence notion was first defined by Esary, Proschan and
Walkup (1967).

Let {X;, t =0, 1, --- } be an m-variate linear process of the form
(2) Xe= ZAuZt—u
u=0

defined on a probability space (Q,F, P), where {Z;} is a sequence of
stationary m-variate associated random vectors (see Definition 2.1 be-
low) with FZ; = Q, E||Z||> < oo and positive definite covariance matrix
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T : m x m. Throughout this paper we shall assume that
0 o

(3) Yl Aull < 00 and Y Ay # Omxim,
u=0 u=0

where for any m x m, m > 1, matrix A = (a;;), Al = 2212, 3772 lag]
and O, «m denotes the m X m zero matrix. Let

oo oQ '
(4) T=(> 4T > 4],
=0 j=0

where the prime denotes transpose, and the matrix I' = [oy;] with

(5)  onj=E(ZuZy) + Y (E(ZwZy) + E(Z1;2Z4)) .
t=2

Further, let S, = )"y | X¢, (n > 1)(So = O).

Fakhre-Zakeri and Lee (1993) proved a central limit theorem for multi-
variate linear processes generated by independent multivariate random
vectors and Fakhre-Zakeri and Lee (2000) also derived a functional cen-
tral limit theorem for multivariate linear processes generated by multi-
variate random vectors with martingale difference sequence.

In this paper we prove a central limit theorem for an m-variate linear
process generated by stationary m-variate associated random vectors.

THEOREM 1.1. Let {Z,t = 0,£1,---} be a strictly stationary as-
sociated sequence of m-dimensional random vectors with E(Z;) = O,
E||Z¢||> < oo and positive definite covariance matrix I' as in (5). Let
{X:} be an m-variate linear process defined as in (2). Assume that

o0 m
(6) E“ZIH2 +2ZZCOV(Z12'7ZM') = 0’2 < 0.

t=2 i=1
Then, the multivariate linear process {X;} fulfills the central limit the-
orem, that is,

(7) n"1S, 2 N(O,T),

where -2 denotes the convergence in distribution and N(Q, T') indicates
a normal distribution with mean zero vector and covariance matrix T
defined in (4).



A central limit theorem for a multivariate linear process 97

2. Proofs

DEFINITION 2.1 (Burton, et. al. 1986). A finite family {Z1,- -, Z,}
of m-variate random vectors is said to be associated if for all coordinate-
wise increasing functions f, g : R™ — R Cov(f(Z1, -+, Zn), 9(Z1, - - -,
Zy)) > 0 where the covariance is defined. A infinite family of m-variate
random vectors is associated if every finite subfamily is associated.

Note that Newman (1980) has proved the central limit theorem for asso-
ciated random variables (See Theorem 2 of [6]). Thus by means of the
simple device due to Cramer Wold the following result holds.

LEMMA 2.1. Let {Z;} be a sequence of stationary associated m-
variate random vectors with E(Z;) = O and E||Z;||* < co. If (6) holds
then

n
n~2 > 2z, 2 N(O,T),
t=1

where I = [oy;] is defined as in (5); that is, {Z;} satisfies the central
limit theorem.

LEMMA 2.2. Let {Z} be a sequence of stationary associated random
vectors with E(Z;) = O, E||Z|* < oo. Let Xy = (3720 4;5)2Z: and
Sk = Zle X¢. Assume that (6) holds. Then

(8) n"? max ||Sk — Skl = 0p(1).

1<k<n
PrOOF. See Appendix. (1

PROOF OF THEOREM 1.1 As in Lemma 2.2, set X; = (3520 A2t
and S, = 37", X,. First note that

oQ m
BIXi?+2) Y E(XuXn)
t=2 =1

(9) = (iAj)z(E”ZﬂlZ+2§:iE(ZnZﬁ)>

j=1 t=2 i=1
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Since X; is associated by Lemma 2.1 {X,} satisfies the central Limit
theorem, that is,

(10) n~1§, 2 N(O,T),

where T is defined as in (4). According to Lemma 2.2 we also have

(11) n"7(S, — Sal = 0p(1).

Hence from (10) and (11) the desired conclusion follows by Theorem 4.1

of Billingsley (1968). O
Appendix

To prove Lemma 2.2 we use the ideas in the proof of Lemma 3 of [5]
and apply Newman and Wrights’ inequality instead of Doob’s maximal
inequality.

PrROOF OF LEMMA 2.2. First observe that

k k-t 0o
Se = > ZA] Zt+z > Az
k t—1 k 00
=Y (DY 4z | +> | D Az
t=1 \j=0 t=1 \j=k~t+1
and thus,
N koo oo
Sk— Sk = —ZZAZHJrZ >S4z
t=1 j=t t=1 \j=k—t+1
= I + II (say).
To prove
(A.1) n~% max ||| = oy(1),

1<k<n
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consider that

Ak

D L
t=1

o
<n7U ) 4 E max
i=1 SES

> i N\ 2 :
J
<o |3 I (2257
j=1

where we have used Newman and Wrights’ maximal inequality for as-
sociated sequence (See Theorem 2. of [7]) and (6). The first inequality
above is obtained by Minkowski’s inequality and by the dominated con-
vergence theorem the last term above tends to zero as n — oo. Thus
(A.1) is proved by Markov inequality.

Next, we show that

1
(A.2) n": max ILI]| = op(1).
Write
I1I =15+ 115,
where

I = A1Zg + Ao(Zi + Zi—1) + -+ + Ap(Zg + -+ + Z1)
and
I = (Ags1 + Apsz+ o) @i+ + ).
Let p,, be sequence of positive integers such that

(A.3) Ppn — 00 and pp/n — 0 as n — oo.
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Note that

1<k<n 1<k<pn

i>Pn

= 0, () +0,( X 14il)

i>pn
= Op(l),

oo

n"t max L] < 3 AidllnT: max [Zg+---+Z
i=0 '
+(

> ladl) 3 max

|Z1 + - - + Zy )

by Newman and Wrights’ maximal inequality, (3) and (A.3). It remains

to prove that

1
YTL r=n 2 1ISnka§Xn “IIl“ = Op(l).

To this end, define for each [ > 1
1= B1Zy+ By (Zy, + Zig—1)+ -+ Bp(Zi +
where

B, = Ag, k<l
=N Omxm, k>1L

Let

Clearly, for each [ > 1,

(A.4) Yus = 0p(1).

"'+Zl),
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On the other hand,

: 2
n(Yn,l _Yn)2 < 1121]?2(71 Z(Ai_Bi) (Zk‘*‘ ”'+Zk—i+1)H
<k<n Il £
: 2
= (0 14 02t T
=41
< A 2 7 7 9
< (2; 14)" max mex 12+ + T
an’ z .
< (2:7 | i“) e max (|21 + -+ Z
+[|Zy + - - + Ze—a))?
2
i 2
= (2 i) (2 max |12y - + 2|
+ 2 max max |[|Z; + - + Zp_i|?)
<k<n I<i<n
2 2
< 43 i) max |y + -+ Zif .

>l
From this result (3) and (6), for any § > 0,
lim limsup P(|Yn; — Yn|?> > 8)

l—o0 n—oo

< llim lim sup 46_2<Z ||A1||>2 n'E

o nmeo i>l

2
max 21+ + i

< 46207 llim (Z ||A1-||)2 =0.
0 sl

In view of (A.4) and (A.5), it follows from Theorem 4.2 of Billingsley
(1968, p.25) that Y, = 0p(1). This completes the proof of Lemma 2.2. O

(A.5)
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