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DEPENDENCE IN MA MODELS
WITH STOCHASTIC PROCESSES

TAE-SUNG KIM, JONG-IL BAEK

Dept. of Statistics, Won-kwang Unsversity, Irs 5{0-749, Korea.

Abstract. In this paper we present of a class infinite M A(moving-
average) sequences of multivariate random vectors. We use the theory of
positive dependence to show that in a variety of cases the classes of M A
sequences are associated. We then apply the association to establish some
probability bounds and moment inequalities for multivariate processes.

1.Introduction

In time series analysis a primary stationary model is the p x 1 moving
average (M A) model given by,

(1.1) X(n)= D AG)e(n—j),n =012, -

J=—o0o

where A(j),7 = 0,£1,£2,---, is a sequence of p x p parameter matrices
such that 37727 [|A(j)I| < oo, and e(n),n = 0,£1,42, .-, is a se-
quence of uncorrelated p x 1 random vectors with mean zero and common
covariance matrix. It is well known that this model emerges from many
physically realizable systems(see,for eample, Hannan(1970),p.9).

Gaver and Lewis(1980) consider stationary ARM A-type where the ran-
dom variables X(n) have gamma distributions. Jacobs and Lewis(1983)
construct ARM A-type models where the random variables X (n) are dis-
crete and assume values in a common finite set. The models mentioned
above have been used in various fields of applied probability and time se-
ries analysis. In this paper we present a class of infinte M A sequences of
multivariate random vectors, has geotnetric marginals. Within each class
of models, the sequences are classified accor ding to their order of depen-
dence on the past. We use the theory of positive dependence to show that
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in a variety of cases the class of M A sequences is associated. We then ap-
ply the association to establish some moment and probability inequality.
In section 2 we define the multivariate geometric distribution which is the
underlying distribution of our paper and the concepts of association and
present a variety of multivariate geometric distributions that are associ-
ated. In section 3 we costruct a class of M A sequences that has geometric
marginals and show that if the distribution is associated,so is the related
M A sequence. Finally, in section 4 we underlying relate multivariate point
processes to the multivarite geometric M A processes discussed in section
3 and utilize positive dependence properties to obtain some probability
bounds and moment inequalities for multivariate processes.

2.Preliminaries

DEFINITION 2.1. Let (X,,---,X,) be a random vector assuming val-
ues of X/s in {1,2,--- }. Then (X,,--- ,X,,) is said to a multivariate geo-
metric distribution (MV G) if the X;/s are geometrically distributed. Note
that the (k — 1) dimensional marginals (hence k-dimensional marginals,
k=1,2,---,n~1) are MVG.

We introduce some examples multivariate geometrically distributed ran-
dom variables:

(A) Let (X4, ,X,) be independent geometric. Then (X,, - ,X,) has
a multivariate geometric distribution.

(B) Let (X1, -+ ,Xn4+1) be independent geometric random variables and
put Ny = min(X,, Xp41, -+, Np = min(X,, Xp41). Then (Ny,--- ,N,)
has multivariate geometric distribution.

(C) (My,--- ,My) be multivariate geometric and let (N1(3),.., Nx(5)),
7 = 1,2,--., be an 1.1.d. sequence of random vectors with multivari-
ate geometric distributions which are independent of (My,--- , My). Then
((N1(7),- -+ , Ni(3)) has a multivariate geometric distribution.

DEFINITION 2.2. Let X = (Xy,---,X,),n=1,2,--- be a multivariate
random vector. The random variables X, - , X, are called associated
if for all pairs of measurable bounded functions f,g : R® — R both
nondecreasing in each argument Cov(f(X),¢(X)) > 0.

The following lemma provides sufficient conditions for some of the mul-
tivariate distributions presented in the above examples to be associated.

LEMMA 2.3. Let T = (Ty,---,T,) be a random vector with compo-
nents assuming values in the set {1,2,---} and let

R(]):(RI(J)”RH(J))9 j=112,"'7
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be an i.i.d. sequence of nonnegative random vectors independent of T.

If (Ty,--- ,T,) are associated, and Ry(j), -+ , Ra(j) are associated, then
ZT;; Ri(5),---, 2321 R,(j) are associated.

Proof. Let f,g : R® — R be a measurable bounded functions nonde-
creasing in each argument and let

T T,
X1 =Y Ri(j), Xn= 3 Ralj).
j=1 j=1
First note that

CO‘U(f(X],"' ,Xn),g(‘xlv'“ ’Xﬂ))
= E(Cov(f(X1, -+ ,Xn),9(Xy,-- s Xa)IT)
+CO’U(Ef(X17 1Xn)'T»Eg(X17“ : ’X")IT)

Now, Ef(Xy,-+,Xn)|T, and Eg(X,,--- ,X,)|T are nondecreasing func-
tions of Ty,- -+ ,T,. Since T, --- , T, are associated

Cov(E[f(Xy, -, X)IT), Elg(Xy1, -+, Xa)|T)) = 0.

Since f[(Xy, -+, X,)|T] and g[(X,, -, X,)|T] are nondecreasing func-
tions of

Ry(1), - ,Ry(T), - ,Ra(1),--- , Ra(T), these random variables are
associated (cf. Barlow and Proschan(1975)). Thus

Cov(f(X1, -, X)) 9( Xy, ,Xn)|T) > 0.

Consequently, Cov(f(X1, -+ ,Xn),9(X1, -, X)) > 0 and Xy, ,Xn
are associated.

3. Model constructions and Notations
We denote a class of infinite M A sequences by
{G(n,m) = (Gy(n,m), -+ ,Ge(n,m)),n =0,£1,42,---}, m=1,2,--- .

We show that each G(n,m) has a multivariate geometric distribution with
a vector mean independent of n or m. Within each class of sequences the
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order of dependence on the past is indicated by the parameter m. For
each positive integer m, G(n,m) depend only on the previous m variates
{G(n—=1,m), - ,G(n—m,m)} where G(n, co) depend on all the preceding
random vectors {G(n — 1,00),G(n — 2,00),---}. After constructing the
various models we presented sufficient conditions for the random variables
{Gi(nj,m)}, 1=1,2,--- ,k; j=1,2,---  k to be associated, where k =
1,2,--- and n; < ng < -+ < ng € {0,£1,£2,---}. In this section, we
construct the geometric class of sequences:

NOTATION. Let p;,--- ,pi be real numbers in (0,1] and let a;(n), - - -,
ax(n) be sequence of parameters such that p; < a;(n) <1,j=12,---,
k. Further, let N(n) = (Ny(n),---,Ng(n)) are independent multivari-
ate geometric vectors with mean vector and let (p; lay(n), - - ,p[lak(n))
and let M, = (My(n), -+, Mi(n)) are i...d. multivariate geometrics, in-
dependent of all N(n), with mean vector (p7',---,p;'). Finally, let
(J1(n,j3),- -+, Je(n,j)) are independent random vectors, independent of all
M(n) and N(n), such that Ji(n, j) is Bernoulli with parameter (1—a;(n)),
i=1,2,--- ,n and let Uy(n, j) be an x n random diagonal matrix

UQ(n’j) = dmg{H-’ J](n,k)," * ,ngqJn(n,S)},q € {]‘)2" ne 1.]}

=q

To ease the notation we put Uy(n,j) = U(n,s). We now present the class
of geometric sequences. Form =1,2,--- andn = 0,41,42,--- let

G(n,m) = ZU(n,r)N(n ~r)+ U(n,m+ 1)M(n ~m) (%)

r=0
and
o0
G(n,00) = ) U(n,r)N(n—r) (%)
r=0
Next, we show that G(n,m) has multivariate geometric distributions.
LEMMA 3.1. Forn =0,%1,42,--- andm,q=1,2,--- let
Hyn,m)=3 " Unr+qg-1)N(n—r—~q+1)+Uy(n,m+q)M(n—
m—gq+1).
Then for all n,m, and q, Hy(n, m) has a k-variate geometric distribution
with mean vector (p;',-+- ,p;i').

Proof. By an induction argument on m we prove the lemma. For m = 0,

H,(n,0)=N(n—-qg+1)+Usn,¢)M(n — g+ 1).
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By computing the characteristic function of the components of H,(n,0)
we can verify that the lemma holds for all n,q. Assume now that the
lemma. holds for m, and all n, g.
Noting that Hy(n,m 4+ 1) = N(n — ¢+ 1)+ Uy(n,q)

X[ oreo Ugt1(n,r + @)N(n ~ g — 1) + Ugga(n,m + ¢ + )M(n — m — g)],
we see that, by induction, the terms in the brackets are k-variate geometric
with mean (p;’!, -+, py*). Since this term is independent of N(n—g+1),
it follows as in the case m = 0 that H,(n,m + 1) has the appropriate
distribution for all n and ¢. Note that G(n,m) given by (x) is equal to
H;(n,m). Thus, we conclude from lemma 3.1 that the following holds.

COROLLARY 3.2. For all n and m, G(n,m) has a k-variate geometric
with mean vector (p;*, -+ ,p; ).

LEMMA 3.3. For all n, G(n,o0) has a k-variate geometric distribution
with mean vector (p7',--+ ,p;').

Proof. Let m be a positive integer. since
Aim (1-a;(n))" < lim (1-p))" =0,j=1,2,---,k,
"!i_r'nm G(n,m) = G(n,c0)
and the results of the lemma follow from corollary 3.2.
LEMMA 3.4. Suppose that My(1),--- ,M(1) are associated and that

for alln, Ny(n),--- , Nx(n) are associated. Then for all positive integers m,
r and all integers n; < ng < --- < n,, the random variables {G(n;),m),
i=1,---,k;j=1,---r} are associated.

LEMMA 3.5. Suppose that My(1),- -, Mi(1) are associated and that
for all n, Ny(n),--+ ,Ny(n) are associated. Then for all positive integers
k and all integers ny < ny < --- < n,, the random variables {G;(n;, o),
i=1,---,k;j=1,---,r} are associated.

Proof. By similar arguments to the ones given in the proof of Lemma
3.3 we conclude that the sequence

{Gl(nl,m)y RS Gk(nhm)a tet aGI(nﬁm)a e »Gk(nram)}
converges in distribution as m — oo to
{Gi(ny,00),- -+ ,Gk(n1,00), -+ ,Gi(nr,0), -+ ,Gr(nr, o)}

By Lemma 3.4, the Gi(nj,m),:=1,2,--- .k, j = 1,-- ,r are associated
for all m. Consequently, the results of the lemma follow by P, Esary et
al(1967).
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4.Probability Inequalities

Throughout this section we fixed m = 1,2, --- , 00 and hence suppress
it from our notation, that is, G(n,m) is denoted by G(n).

In the point process theory of the models, the behavior of the vector of
sums

TG(T) = (TGl(rl)’ Ty TGk (rk))

where )
Tg,(ri) = Z Gi(n),i=1,2,--- ,k
n=]
is of interest, r1,---,7¢ € {1,2,---}. For example, if G(n) is a vector of

k-variate geom etric wating times of a count process

NG(T) = (NGl(rl)a e ’NGk(rk))

which are the number of occurences by trials ry, - ,r; € {1,2,---}, then
N, (ri)=Tg,(r:),1 =1,2,--- k.

We now utilize positive dependence properties to obtain probability bounds
for sums Tg(r) and moment inequalities for the process G(n). First, we
define concepts of positive dependence.

DEFINITION 4.1. Let k = 2,3,--- and let X = (X;,---,Xk) be a ran-
dom vector. X is said to be positively upper orthant dependent(PUOD)
(positively lower orthant dependent(PLOD)) if for all real numbers ty, - - -,

tk’

(4.1) PXi>titi=1,--,k) >, P(X; > t)
(4.2) P(X;<tii=1,---,k)> 05 P(X; <t)
Moreover, the random vector X = (X, ---,Xi) be positively orthant

depent( POD) if they satisfy both PUOD and PLOD

REMARK. (A) If X = (X,,---,X) be associated then X is PUOD
and PLOD. (B) Let fy,---, fr : (~00,00) — [0,00) be measurable non-
decreasing (nonincreasing) functions and let X be PUOD(PLOD). Then

ENL, fi(X:) > O Efi( X))
(see Lehmann (1966)).
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LEMMA 4.2. Suppose that forq = 1,2, - the random variables {G;(n),
t=1,2,---,k;n=1,2,---,q} are associated.
Then for ry, - ,rx € {1,2,-+ ,k} {Tg,(r:),t =1,2,--- is associated.

Proof. It follows from the fact that {T¢,(ri),? =1,2,--- ,k} are non-
decreasing functions of associated random variables.

Next, we obtain the following lemma for the sum Tg(r).

LEMMA 4.3. Assume that a,(n), - ,a(n) are equal to ay, - , o,
respectively, for all n. Let NBy(r;,8;),i = 1,2,--- |k be negative multi-
nomial random variables with parameters (r;,8;). Then

Te,(ri) > NBi(ri,pia;'), i =1,2,-- k.

If in addition, the random variables {Gi(n), i = 1,2,--- ,k, n = 1,2,
<--,q}, ¢ = 1,2, ---, are associated, then for ay 2> ry, - ,ax > ri,
P(Tax(rl) Z Ay, 7TGg(rk) 2 ak)

(4.3) > P(NBi(r1,pra7') > a1)--- P(NBy(re, prag ' 2 ax)

Proof. From the equations (*) or (**) we see that G;(n) > N;(n),
t=1,---,ksn=1,2,.--. Hence

P(Ta,(ri) > ai) = P(3 (Gi(n) > 7))
na=l

2 P(Z"i (Nl(n) 2 Gi)) = P(NBi(rbpia’ul) ...>. ai)ai = 11 27' T 7k

nx=l L
and the first assertion is proved. Since Tg,(r1),- -+ , Tg, (rx) are associated

they are PUOD. (4.3) is obtained.

LEMMA 4.4. Assume that the random variables
{Gi(n),1 =1,2,--- ,kyn=1,2,--- |h}, h = 1,2,--- are associated. Let
ki, -+, kq are positive integers and let Iy,--- |1, € {1,2,---k};¢=1,2,---
Then |
ENMY_ (G, (G)Y 2 I, E(G;(1)M).

Proof. The result follows from random variables G,:fl(n) and corollary

3.2
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