• Title/Summary/Keyword: random polynomials

Search Result 41, Processing Time 0.025 seconds

Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

  • Naserkheil, Masoumeh;Miraie-Ashtiani, Seyed Reza;Nejati-Javaremi, Ardeshir;Son, Jihyun;Lee, Deukhwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1682-1687
    • /
    • 2016
  • The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage ($0.213{\pm}0.007$). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

A Study on a Binary Random Sequence Generator with Two Characteristic Polynomials (두개의 특성 다항식으로 구성된 이진 난수열 발생기에 관한 연구)

  • 김대엽;주학수;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.77-85
    • /
    • 2002
  • A Research of binary random sequence generator that uses a linear shift register had been studied since the 1970s. These generators were used in stream cipher. In general, the binary random sequence generator consists of linear shift registers that generate sequences of maximum period and a nonlinear filter function or a nonlinear combination function to generate a sequence of high linear complexity. Therefore, To generate a sequence that have long period as well as high linear complexity becomes an important factor to estimate safety of stream cipher. Usually, the maximum period of the sequence generated by a linear feedback shift register with L resistors is less than or equal to $2^L$-1. In this paper, we propose new binary random sequence generator that consist of L registers and 2 sub-characteristic polynomials. According to an initial state vector, the least period of the sequence generated by the proposed generator is equal to or ions than it of the sequence created by the general linear feedback shift register, and its linear complexity is increased too.

Estimation of Genetic and Phenotypic Covariance Functions for Body Weight as Longitudinal Data of SD-II Swine Line

  • Liu, Wenzhong;Cao, Guoqing;Zhou, Zhongxiao;Zhang, Guixian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.622-626
    • /
    • 2002
  • Growth records over six generations of 686 pigs in SD-II Swine Line were used to estimate the genetic and phenotypic covariance functions for body weight as longitudinal data. A random regression model with Legendre polynomials of age as independent variables was used to estimate the (co)variances among the regression coefficients, thus the coefficients of genetic and permanent environmental covariance functions by restricted maximum likelihood employing the average information algorithm. The results showed that, using litter effect as additional random effect, a reduced order of fit did not describe the data adequately. For all five orders of fit, however, the change trends of genetic and phenotypic (co)variances were very similar from ${\kappa}$=3 onwards.

Architecture design of small Reed-Solomon decoder by Berlekamp-Massey algorithm (Berlekamp-Massey 알고리즘을 이용한 소형 Reed-Solomon 디코우더의 아키텍쳐 설계)

  • Chun, Woo-Hyung;Song, Nag-Un
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.306-312
    • /
    • 2000
  • In this paper, the efficient architecture of small Reed-solomon architecture is suggested. Here, 3-stage pipeline is adopted. In decoding, error-location polynomials are obtained by BMA using fast iteration method, and syndrome polynomials, where calculation complexity is required, are obtained by parallel calculation using ROM table, and the roots of error location polynomial are calculated by ROM table using Chein search algorithm. In the suggested decoder, it is confirmed that 3 symbol random errors can be corrected and 124Mbps decoding rate is obtained using 25 Mhz system clock.

  • PDF

Krawtchouk Polynomial Approximation for Binomial Convolutions

  • Ha, Hyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.493-502
    • /
    • 2017
  • We propose an accurate approximation method via discrete Krawtchouk orthogonal polynomials to the distribution of a sum of independent but non-identically distributed binomial random variables. This approximation is a weighted binomial distribution with no need for continuity correction unlike commonly used density approximation methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation methods. The accuracy obtained from the proposed approximation is compared with saddlepoint approximations applied by Eisinga et al. [4], which are the most accurate method among higher order asymptotic approximation methods. The numerical results show that the proposed approximation in general provide more accurate estimates over the entire range for the target probability mass function including the right-tail probabilities. In addition, the method is mathematically tractable and computationally easy to program.

A Study on primitive polynomial in stream cipher (스트림암호에서 원시다항식에 대한 고찰)

  • Yang, Jeong-mo
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.27-33
    • /
    • 2018
  • Stream cipher is an one-time-pad type encryption algorithm that encrypt plaintext using simple operation such as XOR with random stream of bits (or characters) as symmetric key and its security depends on the randomness of used stream. Therefore we can design more secure stream cipher algorithm by using mathematical analysis of the stream such as period, linear complexity, non-linearity, correlation-immunity, etc. The key stream in stream cipher is generated in linear feedback shift register(LFSR) having characteristic polynomial. The primitive polynomial is the characteristic polynomial which has the best security property. It is used widely not only in stream cipher but also in SEED, a block cipher using 8-degree primitive polynomial, and in Chor-Rivest(CR) cipher, a public-key cryptosystem using 24-degree primitive polynomial. In this paper we present the concept and various properties of primitive polynomials in Galois field and prove the theorem finding the number of irreducible polynomials and primitive polynomials over $F_p$ when p is larger than 2. This kind of research can be the foundation of finding primitive polynomials of higher security and developing new cipher algorithms using them.

  • PDF

Analysis of Random Ship Rolling Using Partial Stochastic Linearization (통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1995
  • In order to analyze the rolling motion of a ship in random beam waves we use the partial stochastic linearization method. The quadratic damping and the nonlinear restoring moments given by the odd polynomials up to the 11th order are added to a single degree of freedom linear equation of roll motion. The irregular excitation moment is assumed to be the Gaussian white noise. The statistical characteristics of the response by the partial stochastic linearization method is compared with results by the equivalent linearization method and Monte Carlo simulation. It is fecund that the partial stochastic linearization method is not necessarily superior to the equivalent linearization method.

  • PDF

Generalization of Zero-Knowledge Proof of Polynomial Equality (다항식 상등성 영지식 증명의 일반화)

  • Kim, Myungsun;Kang, Bolam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.833-840
    • /
    • 2015
  • In this paper, we are interested in a generalization of zero-knowledge interactive protocols between prover and verifier, especially to show that the product of an encrypted polynomial and a random polynomial, but published by a secure commitment scheme was correctly computed by the prover. To this end, we provide a generalized protocol for proving that the resulting polynomial is correctly computed by an encrypted polynomial and another committed polynomial. Further we show that the protocol is also secure in the random oracle model. We expect that our generalized protocol can play a role of building blocks in implementing secure multi-party computation including private set operations.

Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

  • Cho, C.I.;Alam, M.;Choi, T.J.;Choy, Y.H.;Choi, J.G.;Lee, S.S.;Cho, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.607-614
    • /
    • 2016
  • The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of $polynomials{\times}3$ types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle genetic evaluations for milk production traits in Korea.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.