Browse > Article
http://dx.doi.org/10.5713/ajas.15.0768

Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle  

Naserkheil, Masoumeh (Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran)
Miraie-Ashtiani, Seyed Reza (Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran)
Nejati-Javaremi, Ardeshir (Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran)
Son, Jihyun (Department of Animal Life and Resources, Hankyong National University)
Lee, Deukhwan (Department of Animal Life and Resources, Hankyong National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.12, 2016 , pp. 1682-1687 More about this Journal
Abstract
The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage ($0.213{\pm}0.007$). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.
Keywords
Holstein Dairy Cattle; Milk Protein Yields; Random Regression Model; Test-day Records;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pereira, R. J., A. B. Bignardi, L. EL Faro, R. S. Verneque, A. E. Vercesi Filho, and L. G. Aalbuquerque. 2013. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle. J. Dairy Sci. 96:565-574.   DOI
2 Pletcher, S. D. and C. J. Geyer. 1999. The genetic analysis of age dependent traits: modelling the character process. Genetics 153:825-835.
3 Pool, M. H., L. L. G. Janss, and T. H. E. Meuwissen. 2000. Genetic parameters of Legendre polynomials for first parity lactation curves. J. Dairy Sci. 83:2640-2649.   DOI
4 Rekaya, R., M. J. Carabano, and M. A. Toro. 1999. Use of test-day yields for the genetic evaluation of production traits in Holstein-Friesian cattle. Livest. Prod. Sci. 57:203-217.   DOI
5 Albuquerque, L. G. and K. Meyer. 2001. Estimates of covariance functions for growth from birth to 630 days of age in Nelore cattle. J. Anim. Sci. 79:2776-2789.   DOI
6 Araujo, C. V., R. A. Torres, C. N. Costa, R. A. Torres Filho, S. I. Araujo, P. S. Lopes, A. J. Regazzi, C. S. Pereira, and J. L. R. Sarmento. 2006. Random regressions models to describe the genetic variation of milk yield in Holstein breed. R. Bras. Zootec. 35:975-981.   DOI
7 Bormann, J., G. R. Wiggans, T. Druet, and N. Gengler. 2003. Within-herd effects of age at test-day and lactation stage on test-day yields. J. Dairy Sci. 86:3765-3774.   DOI
8 SAS (Statistical Analysis System) Institute Inc. 2009. SAS/STAT User's Guide: Version 9.2. 2nd edition. SAS Institute Inc., Cary, NC, USA.
9 Jamrozik, J. and L. R. Schaeffer. 1997. Estimates of genetic parameters for a test-day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 80:762-770.   DOI
10 Rekaya, R., M. J. Carabano, and M. A. Toro. 2000. Bayesian analysis of lactation curves of Holstein-Friesian cattle using a nonlinear model. J. Dairy Sci. 83:2691-2701.   DOI
11 Schaeffer, L. R. and J. C. M. Dekkers. 1994. Random regressions in animal models for test-day production in dairy cattle. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production. Guelph, Canada. pp. 443-446.
12 Schaeffer, L. R. 2004. Application of random regression models in animal breeding. Livest. Prod. Sci. 86:35-45.   DOI
13 Strabel, T. and J. Jamrozik. 2006. Genetic analysis of milk production traits of Polish black and white cattle using largescale random regression test-day models. J. Dairy Sci. 89:3152-3163.   DOI
14 Strabel, T., E. Ptak, J. Szyda, and J. Jamrozik. 2004. Multiplelactation random regression test-day model for Polish Black and White cattle. Interbull Bull. 32:133-136.
15 Druet, T., F. Jaffrezic, and V. Ducrocv. 2005. Estimation of genetic parameters for test-day records of dairy traits in the first three lactations. Genet. Sel. Evol. 37:257-271.   DOI
16 Brotherstone, S., I. M. S. White, and K. Meyer. 2000. Genetic modelling of daily milk yield using orthogonal polynomials and parametric curves. J. Anim. Sci. 70:407-415.   DOI
17 Cobuci, J. A., R. F. Euclydes, P. S. Lopes, C. N. Costa, R. A. Torres, and C. S. Pereira. 2005. Estimation of genetic parameters for test-day milk in Holstein cows using a random regression model. Genet. Mol. Biol. 28:75-83.   DOI
18 Druet, T., F. Jaffrezic, D. Boichard, and V. Ducrocv. 2003. Modelling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. J. Dairy Sci. 86:2480-2490.   DOI
19 El Faro, L., L. G. Albuquerque, and V. L. Cardoso. 2008. Variance component estimates for test-day milk yield applying random regression models. Genet. Mol. Biol. 33:665-673.
20 Gengler, N., A. Tijani, G. R. Wiggans, and I. Misztal. 1999. Estimation of (co)variance function coefficients for test day yield with a expectation-maximization restricted maximum likelihood algorithm. J. Dairy Sci. 82:1849.e1-1849.e23.
21 Henderson Jr., C. R. 1982. Analysis of covariance in the mixed model: higher level, nonhomogeneous, and random regressions. Biometrics 38:623-640.   DOI
22 Jamrozik, J. and L. R. Schaeffer. 2002. Bayesian comparison of random regression models for test-day yields in dairy cattle. In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production. Montpellier, France. Communication no. 01-03.
23 Kirkpatrick, M., D. Lofsvold, and M. Bulmer. 1990. Analysis of the inheritance, selection, and evolution of growth trajectories. Genetics 124:979-993.
24 Jamrozik, J., G. J. Kistemaker, J. C. M. Dekkers, and L. R. Schaeffer. 1997. Comparison of possible covariates for use in random regression model for analyses of test-day yields. J. Dairy Sci. 80:2550-2556.   DOI
25 Kettunen, A., E. A. Mantysaari, and L. Poso. 2000. Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci. 66:251-261.   DOI
26 Kirkpatrick, M. and N. Heckman. 1989. A quantitative genetic model for growth, shape, reaction norms, and other infinitedimensional characters. J. Math. Biol. 27:429-450.   DOI
27 Laird, N. M. and J. H. Ware. 1982. Random effects models for longitudinal data. Biometrics 38:963-974.   DOI
28 Meyer, K. 1998. Estimating covariance functions for longitudinal data using a random regression model. Genet. Sel. Evol. 30:221-240.   DOI
29 Meyer, K. 1999. Random regression models to describe phenotypic variation in weights of beef cows when age and season effects are confounded. In: Proceedings of the 50th Annual Meeting of the European Association for Animal Pproduction. Zurich, Switzerland.
30 Meyer, K. 2007. WOMBAT - A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B 8:815-821.   DOI
31 Zavadilova, L., J. Jamrozik, and L. R. Schaeffer. 2005. Genetic parameters for test-day model with random regressions for production traits of Czech Holstein cattle. Czech J. Anim. Sci. 50:142-154.
32 Olori, V. E., W. G. Hill, B. J. McGuirk, and S. Brotherstone. 1999. Estimating variance components for test-day milk records by restricted maximum likelihood with a random regression animal model. Livest. Prod. Sci. 61:53-63.   DOI
33 Strabel, T. and I. Misztal. 1999. Genetic parameters for first and second lactation milk yield of Polish black and white cattle with random regression test-day models. J. Dairy Sci. 82:2805-2810.   DOI
34 Van Der Werf, J. H. J., M. E. Goddard, and K. Meyer. 1998. The use of covariance functions and random regressions for genetic evaluation of milk production based on test-day records. J. Dairy Sci. 81:3300-3308.   DOI
35 Wilmink, J. B. M. 1987. Adjustment of test day milk, fat and protein yield for age, season and stage of lactation. Livest. Prod. Sci. 16:335-348.   DOI