• Title/Summary/Keyword: random errors

Search Result 448, Processing Time 0.026 seconds

BER Performance Analysis of SFH System Using Reed-Solomon Code and Side Information (Reed-Solomon Code와 Side Information을 이용한 SFH 시스템의 BER 성능 분석)

  • 한상진;김용철;강경원
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.137-140
    • /
    • 2000
  • In this paper. we analyzed the performance of a SFH (slow frequency hopping) system under partial-band jamming, multiple access interference and wide-band random noise. For the correction of burst errors due to channel hit, Reed-Solomon coding followed by block interleaving is employed. Errors-and-erasures decoding with side information is exploited to enhance the correctional capability. We derived a closed-form solution for the BER estimation. Errors resulting from random noise and erasures resulting from burst interference are separately analyzed and finally BER is computed due to these composite noise sources. Estimated BER performance is verified by computer simulation.

  • PDF

An Adaptively Segmented Forward Problem Based Non-Blind Deconvolution Technique for Analyzing SRAM Margin Variation Effects

  • Somha, Worawit;Yamauchi, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.365-375
    • /
    • 2014
  • This paper proposes an abnormal V-shaped-error-free non-blind deconvolution technique featuring an adaptively segmented forward-problem based iterative deconvolution (ASDCN) process. Unlike the algebraic based inverse operations, this eliminates any operations of differential and division by zero to successfully circumvent the issue on the abnormal V-shaped error. This effectiveness has been demonstrated for the first time with applying to a real analysis for the effects of the Random Telegraph Noise (RTN) and/or Random Dopant Fluctuation (RDF) on the overall SRAM margin variations. It has been shown that the proposed ASDCN technique can reduce its relative errors of RTN deconvolution by $10^{13}$ to $10^{15}$ fold, which are good enough for avoiding the abnormal ringing errors in the RTN deconvolution process. This enables to suppress the cdf error of the convolution of the RTN with the RDF (i.e., fail-bit-count error) to $1/10^{10}$ error for the conventional algorithm.

A Technique to Circumvent V-shaped Deconvolution Error for Time-dependent SRAM Margin Analyses

  • Somha, Worawit;Yamauchi, Hiroyuki;Yuyu, Ma
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.216-225
    • /
    • 2013
  • This paper discusses the issues regarding an abnormal V-shaped error confronting algebraic-based deconvolution process. Deconvolution was applied to an analysis of the effects of the Random Telegraph Noise (RTN) and Random Dopant Fluctuation (RDF) on the overall SRAM margin variations. This paper proposes a technique to suppress the problematic phenomena in the algebraic-based RDF/RTN deconvolution process. The proposed technique can reduce its relative errors by $10^{10}$ to $10^{16}$ fold, which is a sufficient reduction for avoiding the abnormal ringing errors in the RTN deconvolution process. The proposed algebraic-based analyses allowed the following: (1) detection of the truncating point of the TD-MV distributions by the screening test, and (2) predicting the MV-shift-amount by the assisted circuit schemes needed to avoid the out of specs after shipment.

  • PDF

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

Estimation Technique of Fixed Sensor Errors for SDINS Calibration

  • Lee, Tae-Gyoo;Sung, Chang-Ky
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.536-541
    • /
    • 2004
  • It is important to estimate and calibrate sensor errors in maintaining the performance level of SDINS. In this study, an estimation technique of fixed sensor errors for SDINS calibration is discussed. First, the fixed errors of gyros and accelerometers, excluding gyro biases are estimated by the navigation information of SDINS in multi-position. The SDINS with RLG includes flexure errors. In this study, the gyros flexures are out of consideration, but the proposed procedure selects certain positions and rotations in order to minimize the influence of flexures. Secondly, the influences of random walks, flexures and orientation errors are verified via numerical simulations. Thirdly, applying the previous estimated errors to SDINS, the estimation of gyro biases is conducted via the additional control signals of close-loop self-alignment. Lastly, the experiments illustrate that the extracted calibration parameters are available for the improvement of SDINS.

Saddlepoint approximations for the ratio of two independent sequences of random variables

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.255-262
    • /
    • 1998
  • In this paper, we study the saddlepoint approximations for the ratio of independent random variables. In Section 2, we derive the saddlepoint approximation to the probability density function. In Section 3, we represent a numerical example which shows that the errors are small even for small sample size.

  • PDF

STATIONARY $\beta-MIXING$ FOR SUBDIAGONAL BILINEAR TIME SERIES

  • Lee Oe-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.79-90
    • /
    • 2006
  • We consider the subdiagonal bilinear model and ARMA model with subdiagonal bilinear errors. Sufficient conditions for geometric ergodicity of associated Markov chains are derived by using results on generalized random coefficient autoregressive models and then strict stationarity and ,a-mixing property with exponential decay rates for given processes are obtained.

Analysis and Probability of Overestimation by an Imperfect Inspector with Errors of Triangular Distributions (삼각 과오 분포를 가진 불완전한 검사원의 과대 추정 확률과 분석)

  • Yang, Moon Hee;Cho, Jae Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.117-132
    • /
    • 2018
  • There always exist nonzero inspection errors whether inspectors are humans or automatic inspection machines. Inspection errors can be categorized by two types, type I error and type II error, and they can be regarded as either a constant or a random variable. Under the assumption that two types of random inspection errors are distributed with the "uniform" distribution on a half-open interval starting from zero, it was proved that inspectors overestimate any given fraction defective with the probability more than 50%, if and only if the given fraction defective is smaller than a critical value, which depends upon only the ratio of a type II error over a type I error. In addition, it was also proved that the probability of overestimation approaches one hundred percent as a given fraction defective approaches zero. If these critical phenomena hold true for any error distribution, then it might have great economic impact on commercial inspection plans due to the unfair overestimation and the recent trend of decreasing fraction defectives in industry. In this paper, we deal with the same overestimation problem, but assume a "symmetrical triangular" distribution expecting better results since our triangular distribution is closer to a normal distribution than the uniform distribution. It turns out that the overestimation phenomenon still holds true even for the triangular error distribution.

Part-Of-Speech Tagging and the Recognition of the Korean Unknown-words Based on Machine Learning (기계학습에 기반한 한국어 미등록 형태소 인식 및 품사 태깅)

  • Choi, Maeng-Sik;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Unknown morpheme errors in Korean morphological analysis are divided into two types: The one is the errors that a morphological analyzer entirely fails to return any morpheme sequences, and the other is the errors that a morphological analyzer returns incorrect combinations of known morphemes. Most previous unknown morpheme estimation techniques have been focused on only the former errors. This paper proposes a unknown morpheme estimation method which can handle both of the unknown morpheme errors. The proposed method detects Eojeols (Korean spacing units) that may include unknown morpheme errors using SVM (Support Vector Machine). Then, using CRFs (Conditional Random Fields), it segments morphemes from the detected Eojeols and annotates the segmented morphemes with new POS tags. In the experiments, the proposed method outperformed the conventional method based on the longest matching of functional words. Based on the experimental results, we knew that the second type errors should be dealt with in order to increase the performance of Korean morphological analysis.

Industrial application of gross error estimation and data reconciliation to byproduction gases in iron and steel making plants

  • Yi, Heui-Seok;Hakchul Shin;Kim, Jeong-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.2-69
    • /
    • 2002
  • Process measurements contain random and gross errors and the size estimation of gross errors is required for production accounting. Mixed integer programming technique had been applied to identify and estimate the gross errors simultaneously. However, the compensate model based on mixed integer programming used all measured variables or spanning tree as gross error candidates. This makes gross error estimation problem combinatorial or computationally expensive. Mixed integer programming with test statistics is proposed for computationally inexpensive gross error identification /estimation. The gross error candidates are identified by measurement test and the set of gross error candidates are...

  • PDF