• 제목/요약/키워드: rainfall observation network

검색결과 36건 처리시간 0.022초

강우자료 형태에 따른 인공신경망의 일유입량 예측 정확도 평가 (Influence of Rainfall observation Network on Daily Dam Inflow using Artificial Neural Networks)

  • 김석현;김계웅;황순호;박지훈;이재남;강문성
    • 한국농공학회논문집
    • /
    • 제61권2호
    • /
    • pp.63-74
    • /
    • 2019
  • The objective of this study was to evaluate the influence of rainfall observation network on daily dam inflow using artificial neural networks(ANNs). Chungju Dam and Soyangriver Dam were selected for the study watershed. Rainfall and dam inflow data were collected as input data for construction of ANNs models. Five ANNs models, represented by Model 1 (In watershed, point rainfall), Model 2 (All in the Thiessen network, point rainfall), Model 3 (Out of watershed in the Thiessen network, point rainfall), Model 1-T (In watershed, area mean rainfall), Model 2-T (All in the Thiessen network, area mean rainfall), were adopted to evaluate the influence of rainfall observation network. As a result of the study, the models that used all station in the Thiessen network performed better than the models that used station only in the watershed or out of the watershed. The models that used point rainfall data performed better than the models that used area mean rainfall. Model 2 achieved the highest level of performance. The model performance for the ANNs model 2 in Chungju dam resulted in the $R^2$ value of 0.94, NSE of 0.94 $NSE_{ln}$ of 0.88 and PBIAS of -0.04 respectively. The model-2 predictions of Soyangriver Dam with the $R^2$ and NSE values greater than 0.94 were reasonably well agreed with the observations. The results of this study are expected to be used as a reference for rainfall data utilization in forecasting dam inflow using artificial neural networks.

Application of X-band polarimetric radar observation for flood forecasting in Japan

  • Kim, Sun-Min;Yorozu, Kazuaki;Tachikawa, Yasuto;Shiiba, Michiharu
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.15-15
    • /
    • 2011
  • The radar observation system in Japan is operated by two governmental groups: Japan Meteorological Agency (JMA) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan. The JMA radar observation network is comprised of 20 C-band radars (with a wavelength of 5.6 cm), which cover most of the Japan Islands and observe rainfall intensity and distribution. And the MLIT's radar observation system is composed of 26 C-band radars throughout Japan. The observed radar echo from each radar unit is first modified, and then sent to the National Bureau of Synthesis Process within the MLIT. Through several steps for homogenizing observation accuracy, including distance and elevation correction, synthesized rainfall intensity maps for the entire nation of Japan are generated every 5 minutes. The MLIT has recently launched a new radar observation network system designed for flash flood observation and forecasting in small river basins within urban areas. It is called the X-band multi parameter radar network, and is distinguished by its dual polarimetric wave pulses of short length (3cm). Attenuation problems resulting from the short wave length of radar echo are strengthened by polarimetric wavelengths and very dense radar networks. Currently, the network is established within four areas. Each area is observed using 3-4 X-band radars with very fine resolution in spatial (250 m) and temporal (1 minute intervals). This study provides a series of utilization procedures for the new input data into a real-time forecasting system. First of all, the accuracy of the X-band radar observation was determined by comparing its results with the rainfall intensities as observed by ground gauge stations. It was also compared with conventional C-band radar observation. The rainfall information from the new radar network was then provided to a distributed hydrologic model to simulate river discharges. The simulated river discharges were evaluated again using the observed river discharge to estimate the applicability of the new observation network in the context of operations regarding flood forecasting. It was able to determine that the newly equipped X-band polarimetric radar network shows somewhat improved observation accuracy compared to conventional C-band radar observation. However, it has a tendency to underestimate the rainfall, and the accuracy is not always superior to that of the C-band radar. The accuracy evaluation of the X-band radar observation in this study was conducted using only limited rainfall events, and more cases should be examined for developing a broader understanding of the general behavior of the X-band radar and for improving observation accuracy.

  • PDF

조선시대 측우기 등장과 강우량 관측망에 대한 역사적 고찰 (A Historical Review on the Introduction of Chugugi and the Rainfall Observation Network during the Joseon Dynasty)

  • 조하만;김상원;전영신;박혜영;강우정
    • 대기
    • /
    • 제25권4호
    • /
    • pp.719-734
    • /
    • 2015
  • Korea is one of the country with the world's oldest meteorological observation records. Starting with first meteorological record of fog in Goguryeo in the year of 34 BC, Korea had left a great deal of quantitative observation records, from the Three Kingdoms Period to Goryeo to Joseon. During the Joseon Dynasty, with a great attention by kings, efforts were particularly made to measure rainfall in a systematic and scientific manner. In the 23rd year of King Sejong (1441), the world's first rain gauge called "Chugugi" was invented; in the following year (1442), a nationwide rainfall observation network was established. The King Sejong distributed Chugugi to 350 observation stations throughout the state, even to small towns and villages, for measuring and recording rainfall. The rainfall observation using Chugugi, initiated by King Sejong, had been in place for about 150 years, but halted during national disturbances such as Japanese invasion of Korea in 1592. Since then, the observation had been forgotten for a long time until the rainfall observation by Chugugi was resumed in the 48th year of King Yeongjo (1770). King Yeongjo adopted most of the existing observation system established by King Sejong, including the size of Chugugi and observation rules. He, however, significantly reduced the number of Chugugi observation stations to 14, and commanded the 352 local authorities such as Bu, Gun, Hyeon to conduct "Wootaek", a method of measuring how far the moisture had absorbed into the soil when it rains. Later on, six more Chugugi stations were established. If the number of stations of Chugugi and Wootaek are combined together, the total number of rainfall observation station in the late period of Joseon Dynasty was 372. The rainfall observation with Chugugi during the Joseon Dynasty is of significance and excellence in three aspects: 1) the standard size of Chugugi was so scientifically designed that it is as great as today's modern rain gauge; 2) rainfall was precisely measured, even with unit of Bun (2 mm); and 3) the observation network was distributed on a nationwide basis.

면적강우량 산정을 위한 관측망 최적설계 연구 (Optimal Network Design for the Estimation of Areal Rainfall)

  • 이재형;유양규
    • 한국수자원학회논문집
    • /
    • 제35권2호
    • /
    • pp.187-194
    • /
    • 2002
  • 하천유역 면적강우량 산정의 정확도를 개선하기 위하여 기존 강우관측자료의 통계적 특성을 이용한 강우관측망의 최적설계방법을 연구하였다. 최적설계를 위한 목적함수는 면적강우량의 추정오차 및 지점강우량 관측비용의 항으로 구성하고, 그 값이 최소인 관측망은 선정하였다. 통계f7파의 추정방법으로는 통계적 분산 산정방법인 크리깅 모형을 채택하였다. 비용은 강우관측소의 설치비와 연간운영 비론 적용하고, 오차항과 비용항의 통합에는 등치매개변수를 이용하였다. 연구된 최적설계방법을 댐 신설로 강우관측소 증설이 필요한 용담댐 유역에 적용하여, 대상유역의 최적 강우관측망을 제안하였다.

Quantitative Estimation of the Precipitation utilizing the Image Signal of Weather Radar

  • Choi, Jeongho;Lim, Sanghun;Han, Myoungsun;Kim, Hyunjung;Lee, Baekyu
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.245-256
    • /
    • 2018
  • This study estimated rainfall information more effectively by image signals through the information system of weather radar. Based on this, we suggest the way to estimate quantitative precipitation utilizing overlapped observation area of radars. We used the overlapped observation range of ground hyetometer observation network and radar observation network which are dense in our country. We chose the southern coast where precipitation entered from seaside is quite frequent and used Sungsan radar installed in Jeju island and Gudoksan radar installed in the southern coast area. We used the rainy season data generated in 2010 as the precipitation data. As a result, we found a reflectivity bias between two radar located in different area and developed the new quantitative precipitation estimation method using the bias. Estimated radar rainfall from this method showed the apt radar rainfall estimate than the other results from conventional method at overall rainfall field.

RAINFALL SEASONALITY AND SAMPLING ERROR VARIATION

  • Yoo, Chul-sang
    • Water Engineering Research
    • /
    • 제2권1호
    • /
    • pp.63-72
    • /
    • 2001
  • The variation of sampling errors was characterized using the Waymire-Gupta-Rodriguez-Iturbe multi-dimensional rainfall model(WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considered are those for using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of monthly rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather normal to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain arean than in the down stream plain area.

  • PDF

농촌유역 수문관측망 구축.운영(이동유역) (Construction and Management of Hydrological Observation Network in Yi-dong Rural Basin)

  • 박재홍;김진택;이용직
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.261-264
    • /
    • 2002
  • Yi-dong experimental basin is operated for research on the rural basin characteristics and accumulation of a long term data by hydrological observation equipments. It is basin area 9,440ha, length 14.4km and slope 0.67%. Hydrological observation network is constructed of rainfall meter 4points, reservoir storage level 3points and river water level 2points.

  • PDF

이동유역(농기공 시험유역) 강우-유출특성 (Yi-dong Basin(KARICO Experimental Site) Rainfall-Runoff Characteristics)

  • 박재흥;허유만
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.427-430
    • /
    • 2003
  • Yi-dong experimental site is operated for research on the rural basin characteristics and accumulation of a long term data by hydrological observation equipments. This basin area is 9,300ha, length 14.4km and slope 0.67%. Hydrological observation network has 3 rainfall meter3, 3 reservoir storage levels and 2 river water levels.

  • PDF

차량용 강우센서와 강우관측소 관측자료 비교분석 (Comparison and Analysis of Observation Data of Rainfall Sensor for Vehicle and Rainfall Station)

  • 이충대;이병현;조형제;김병식
    • 대한토목학회논문집
    • /
    • 제38권6호
    • /
    • pp.783-791
    • /
    • 2018
  • 낮은 밀도의 강우관측망과 레이더 강우의 편향적인 추정은 좁은 지역에서 발생하는 돌발홍수에 대한 적용에는 한계가 있다. 이를 개선하기 위해서는 더 많은 강우정보의 생산이 필요하다. 본 연구에서는 최근에 개발되어 활용되고 있는 차량용 강우센서를 이용하여 적용성을 분석하였다. 개발된 강우센서를 차량에 부착하여 차량의 이동에 따른 강우 관측을 수행하였다. 분석 방법은 강우센서와 인근 강우관측소의 관측값에 대하여 시계열 및 평균 강수량을 이용하였다. 차량별로 부착된 센서(1~10번)의 관측 강우를 분석한 결과 전체적으로 센서별로 상대적으로 차이가 발생하고 있으나 강우 사상에 따른 관측값의 경향은 일정한 패턴을 나타내고 있는 것을 알 수 있었다. 이는 강우센서의 관측위치와 인근 강우관측소와의 거리 차이, 차량의 이동 속도, 강우관측 방법 등 다양한 원인에 의해 발생하는 것으로 분석되었다. 이 결과는 차량용 강우센서를 이용한 강우관측의 가능성을 보여주었으며 향후 다양한 조건에서의 실험 및 강우센서 개선을 통하여 보다 정밀한 강우관측이 가능할 것으로 검토되었다.

시험유역운영(이동유역) (Operation of Experimental Basin(Yi-dong Basin))

  • 박재홍;김진택;박지환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2003년도 학술발표회논문집(2)
    • /
    • pp.611-614
    • /
    • 2003
  • Yi-dong experimental basin is operated for research on the rural basin characteristics and accumulation of a long term data by hydrological observation equipments. It is basin area 9,440ha, length 14.4km and slope 0.67%. Hydrological observation network is constructed of rainfall meter 4points, reservoir storage level 3points and river water level 2points.

  • PDF