Water Engineering Research, Vol 2, No. 1, 2001 63

RAINFALL SEASONALITY AND SAMPLING
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Abstract: The variation of sampling errors was characterized using the Waymire-Gupta-Rodriguez-Iarbe multi-di-
mensional rainfall model (WGR model). The parameters used for this study are those derived by Jung et ai. (2000) for
the Han River Basin using a genetic algorithm technique. The sampling error problems considered are those for using
raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done
for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the
study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of
monthly rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by
considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with
its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different
each month, it seems rather normal to provide different pattern of sampling errors from that of monthly rainfall amounts.
(2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream
plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain area than in the

down stream plain area.
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1. INTRODUCTION Pasically t]‘le sampling crror can be es-ti-mafed
using the rainfall measurements conditioning

Sampling error is inherent as the rainfall ob- that they are three-dimensional in time and
servation cannot be continuous both in time and space. However, this kind of data is generally
space. For example, the raingauge measures unavailable, so we follow a rather indirect way
rainfall continuously in time but discretely in using a multi-dimensional rainfall model. A
space. On the other hand, radar or satellite ob- multi-dimensional model of rainfall counts all
serves the rainfall field continuously in space observed characteristics of rainfall both in
but discretely in time. This inherent gab causes physical and statistical point of view, This kind
some errors in estimating the area-time average of multi-dimensional rainfall models can be

of rainfall depth. helpful not anly to characterize the rainfall field,
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but also to make various application studies easy
as in many cases their structures are available
analytically (North and Nakamoto, 1989; North
et al., 1994; Ha and North, 1994; Valdes et al.,
1994). So far, many multi-dimensional rainfall
models have been developed for various pur-
poses, like realistic rainfall simulation, sampling
strategy, and calibration of sensors. Examples
are the Waymire-Gupta-Rodriguez-Iturbe multi-
dimensional rainfall model (Waymire, Gupta,
and Rodriguez-Iturbe, 1984; hereafter the WGR
model), the noise forced diffusive model (North
and Nakamoto, 1989), and recently a model by
Yoo et al. (1996). Each mode] has its own ad-
vantages and disadvantages in practical use. A
complex model, like the WGR model, can rep-
resent the rainfall field more accurately provided
the proper estimates of parameters are used.
However, as shown by Islam et al. (1988), Val-
des et al. (1990) and Koepsell and Valdes
(1991), its parameter estimation has been a dif-
ficult task. A relatively simple model, like the
noise forced diffusive rainfall model, has ad-
vantages of easy parameter estimation and ap-
plication to the other purposes (mainly due to
the simple model structure with a small set of
parameters), but it lacks proper description of
physical and statistical features of observed
rainfall fields (Valdes et al., 1994). The model
by Yoo et al. (1996) may be said to be in be-
tween the above two. It has relatively simple
form with only four parameters. Its parameter
estimation is also simple, but it lacks the de-
scription of long-term storm arrival system and
spatial clustering.

The sampling error to be estimated in this
study is for analyzing its variation due to the
seasonal variation of rainfall amounts. As we
well aware, the rainfall seasonality is quite
common in the Monsoon area. So far, there have
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been many cases to estimate the sampling errors
for a specific season of a region (North and Na-
kamoto, 1989; Graves et al., 1993}, but no at-
tempts have been made to evaluate the sampling
error variation due to the rainfall seasonality.

In this study, we are to use the WGR model
for the sampling error study. Even though the
structure of the WGR model is very complex
and non-linear, we believe this model is the best
one we can choose for the study purpose. Basi-
cally, the characterization of rainfall fields using
the WGR model is done by its parameter esti-
mation, generally using the first- and sec-
ond-order statistics numerically derived from
point gauge measurements. Recently, Jung et al.
(2000) estimated the WGR model parameters
for the Han River Basin using a genetic algo-
rithm technique and showed their validity by
comparing the model statistics with those ob-
served. As the parameters estimated are for sev-
eral cases of seasonal and regional rainfalls, we
may be easily apply them to characterize the
sampling characteristics for various cases. The
sampling error problems considering in this
study are for raingauge network, the satellite
observation, and for the combined cases. By
comparing the sampling errors estimated, we
will quantify the variation of sampling errors

due to the rainfall seasonality.

2. THE WGR MODEL AND
PARAMETER ESTIMATION

2.1 Model Description

The WGR model (Waymire et al., 1984) was
developed to represent meso-scale (about 20-
200km) rainfall. As a conceptual model, this
model shows a good link between atmospheric
dynamics and a statistical description of meso-
scale rainfall. The model represents rainfall in a
hierarchical approach with rain cells embedded
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in cluster potential centers, which are in turn
embedded in rainbands. The Poisson process
was introduced for the rainbands arrival scheme
and the spatial Poisson process to distribute the
cluster potentials within a rainband. The occur-
rences of rain cells within the cluster potentials
and the rainband following are assumed to be a
random number of points independently and
identically distributed in the space-time cylinder
with common probability density function.

The representation of the ground-level rainfall
intensity (at location x and time #) of the model
can be written as follows

sen=[_ [, alt=s)x=y=v(t-5)1X(s,»)dsdy

:J'i 21t = $)Z[s5, %~ v{t — 5)lds ()

where, v is a uniform and steady drift velocity
vector and Z¢t, x} is given by

20 =] aalr- Xty 2)

where the two-stage point cluster field X¢t,y), a
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random field, governs the instantaneous genera-
tion of rain cells in time and space, and the ker-
nel go(r) distributes the rainfall intensity in
space around each cell. The kernel g,(¢) repre-
sents the temporal evolution of the life cycle of
a rain cell, Table 1 shows typical parameters and
their descriptions. More description of the
model can be found in Waymire et al. (1984)
and Gupta and Waymire (1987).

The analytical form of the frequency-
wavenumber spectrum of the WGR model was

derived by Valdes et al. (1990);

aE(D,0)
a? +9?
2aB(8* —a*)
(@ +az2 B +4x2 52
‘o, af(f* -a’) E(D,c)
(@ +O B +67) 4 (D +0?)

S(f.vevy)=6

+92

5, )6(v,)

()

where, &) is a dirac delta function and:

Table 1. Summary of typical parameters of the WGR model and their example estimates
(tuned to the GATE data hy Valdes et al. (1990))

Parameter Description Order of Magnitude Estimates {(GATE)
- rain band arrival rate bands/hour 0.0128
or mean density of cluster potential clusters \km? 0.0038

<> mean number of cells per cluster 3.82
i cellular birth rate cells/hour 0.355
o |l vt o
o' mean cell age hour 0.58
D spatial range of cell intensity km 3.0
—

|Us | rainband speed relative to the ground km/hour 10.0

7. cell speed relative to the band km/hour 0.0
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E(D,o) =87r(D2 Jraz)exp{%ﬁ:z(D2 +O‘2)
v +vi)
O=2z(v,U,+v U, + £)

This spectrum shows the dependencies of order
-2 and -4 on both frequency and wavenumber.
These dependencies are the consequence of the
exponential descriptions of rainfall intensity
decay in time and the Gaussian kernel to dis-
tribute the rainfall intensity in space (Yoo et al,
1996).

2.2 Model Non-linearity and Parameter
Estimation

The extreme difficulties associated with the
estimation of the WGR model parameters are
recognized to be a major impediment to its
wider use and full utilization. It is mainly be-
cause of the fact that most of the WGR model
parameters are not physically measurable.

The WGR model has nine parameters: Ay, «,
B, Elig), E[V], p, D, ¢ and U, which may be
evaluated using the method of moments. Vari-
ous combinations of first- and second-order sta-
tistics from historical rainfall data can be
equated to their theoretical expressions, result-
ing in a set of nine highly nonlinear equations
with nine unknowns. However, although theo-
retically possible, it appears unrealistic to at-
tempt to solve nine simultaneous equations (Is-
lam et al., 1988; Valdes et al., 1990; Koepsell
and Valdes, 1991). Rather, it is recommended to
use a combination of physically determined pa-
rameters and parameters estimated from data.
Generally three parameters, D, o and U, are
determined from physical consideration and
kept fixed while other six were estimated using
the method of moments (Islam et al., 1988).

This results in a set of six equations with six
unknown parameters. A minimom least square
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technique has been employed to obtain estimates
of the model parameters. Let F(X) be the set of
nonlinear equations in parameter X that must
satisfy the observation vector &

F(X)-0=0. (4)

where F ()% ) is the best estimate of & The

elements in &have different order of magnitudes
and hence their sum of the squares tend to be
biased toward higher values. To circumvent this
problem, every F(X) is normalized by the cor-
responding & value. Now, the solution of (4)
may be derived through a simple unconstrained

nonlinear minimization:

min {02 D2
P4

%_1)24....}

x)
1

3

+(

In this study we used the parameters esti-
mated by Jung et al. (2000} for further analysis.
Their estimation procedure also utilized a com-
bination of physically determined parameters
and parameters to be estimated from the data.
The parameters, D and ¢ are chosen to be
1.6~2.6 km and 7—9 km, respectively, from
the observation of radar snapshots. The cell ve-
locity {/ was determined from the climatological
conditions for each month, which was set to be 7
to 11 kmv/hour (Korea Meteorological Admini-
stration, 1995),

The other parameters estimated are summa-
rized in Table 2 for the downstream plain area
and the upstream mountain area, respectively.
Also, Tables 3 and 4 compares the observed and
model statistics for the cases we consider. From
these tables we can easily find the rainfall sea-
sonality captured in the WGR model Parame-
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Table 2. Parameters estimated for the downstream plain area and for the upstream mountain area
Month Region Am i <P > a o iy
Plain 0.0107 1.0000 10.9991 3.3922 0.0020 50.0053
May Mountain 0.0144 1.0040 10.9494 4.2814 0.0020 68.9469
Plain 0.0100 1.0000 9.7543 3.8924 0.002¢ 92.1858
fune Mountain 0.0131 1.0746 19.8374 3.7334 0.0017 72.0468
Plain 0.0237 1.0:003 19.6915 3.9522 0.0020 52,4183
MY Noumtain | 00326 | 10000 | 109995 | 40099 | 00020 68.2346
Plain 0.0151 1.4345 19.8945 3.1239 0.0019 64.2190
August Mountain 0.0209 1.4831 19.9517 3.4790 0.0018 106.2786
September Plain 0.0100 1.0600 18.5454 3.1023 0.0020 50,0000
Mountain 0.0100 1.0000 17.5801 3.1000 0.0020 50.0000
October Plain 0.0100 12510 6.4654 3.2463 0.0019 63.8575
Mountain 0.0100 1.0000 6.4522 4.2868 0.0018 50.0080

Table 3. Comparison of basic statistics derived and observed in the downstream plain area

Month 1hr-mean 1hr-var ithr-corr 6hr-var 6hr-corr Ccorr
M Observed 0.121 0.89 0.493 11.864 0.409 0.360
a
Y Maodel 0.115 0.924 0.559 11,778 0.083 0.275
] Observed 0.190 1.664 0.500 27.130 0.312 0.450
une
Model 0,196 1.576 0.565 27911 0.307 0.375
Tul Observed (1,446 5.830 0.451 86.877 (.328 0.300
u
y Model 0.445 6.727 0.551 67.751 (0.183 0.183
Observed 0.376 4.799 0.471 81.736 0.323 0.300
August
Model 0.357 5.376 0.448 64.860 0.232 0.295
Observed 0.224 2.541 0.548 53,222 0.405 0.510
September
Model 0.216 3.175 0.442 37.779 0.082 0.334
Observed 0.038 0.382 0.318 3.003 0.165 0.130
October
Model 0.045 0.352 0.249 2.836 0.165 0.114

* Var : Variance; Corr ; Correlation; Ccorr : Crosscorrelation (50km)

ters. Basically, the high rainfall amount in the
rainy season can be explained by the arrival rate
of rain bands, mean number of cells per cluster
potential center, and raincell intensity. When
also comparing the parameters estimated for the
downstream plain area and upstream mountain

area, an cbvious distinction can be found in the

number of storms. That is, the number of storms
in the mountain area was estimated to be sig-
nificantly higher than that in the plain area. Thus,
due to the orographic effect, more frequent
storms can be expected to happen in the moun-
tain area, but, still, the total amount of rainfall in

a given period seems to remain almost the same
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Table 4. Comparison of basic statistics derived and observed in the upstream mountain area

Month I-mean 1-var 1-corr 6-var 6-corr Ccorr
May Observed 0.111 0.820 0416 12.075 0.337 0.150
Model 0.114 0.841 0.428 11.608 0.304 0.108
Tune Observed 0.200 3.266 0.367 35424 0.265 0.170
Model 0.208 3.208 0.297 34183 0.135 0.168
July Observed 0.397 4,208 0.482 74.355 0.354 0.150
Model 0.402 4.855 0.391 52.891 0.070 0.143
Observed 0.326 4.693 0.395 58.756 0.291 0.120

August
Model 0.318 5.202 0.429 53,184 0.228 0.105
Observed (.232 2.207 0.510 42.687 0.392 0.350

September

Model 0.188 2.802 0.422 32.165 0.077 0.288
0 Observed (0.025 0.078 0.334 0.977 0.185 0.090

ctober
Model 0.022 0.100 0.327 0.918 0.054 0.049

* Var : Variance; Corr : Correlation; Ccorr : Crosscorrelation (50km)

as in the downstream plain area. It is because the
cell intensity estimated for the upstream moun-
tain area is a bit less than that for the down-
stream plain area. This difference is also be-
lieved to affect on the sampling error variation
as well as the rainfall seasonality. More in detail
description of the WGR model parameter esti-
mation can be found in Jung et al. (2000).

3. VARIATION OF SAMPLING
ERRORS DUE TO RAINFALL
SEASONALITY

North and Nakamoto (1989) derived a for-
malism for calculating the sampling errors from
satellites or raingauge networks (see also Yoo
(2000)). Their equation for sampling error con-
tains three integrals both in wavenumber and
frequency domains for design filter and rainfall
spectrum. The design filter is dependent on the
sampling design such as field size, sampling
duration, sampling interval, distance between
raingauges, etc. Thus, with given setting of

sampling design one can calculate the sampling

error, or he can also design a sampling plan for
raingauge network, satellite visit schedute, or
both combined with the maximum tolerable
sampling error given. The equation for sampling

ITor is given as,

£ = o-zﬂ'ﬂH(vx,v},,f) LSy YAV, o dlf
(6)

where, |H fz s the design filter, § is the rainfall

spectrum, and ¢’ the variance of the continuous
rainfall field.

For the case of raingauge network design,
equally spaced both in x- and y-direction by Ax
and Ay over Ly x Ly domain, the design filter is

expressed such as

[ =G v, 1)G (v, Ly)G2 (T
| 2 W)
t- GV, ADG(7v, Ay)
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where, G(x)=sin {x)/x is the Bartlett filter. As
the Bartlett filter, G{x), converges to one when x
approaches zero, if the dimension L of the aver-
aging area vanishes, the above formalism will
predict the expected point results. The design
filter for the satellite observation every Af dur-
ing the period of T can also be expressed as:

2
2_ 2 2 : 7 ——
|H|" =G* (v, L))G* (v, [)G( T){l G(ngf)]

(8)

where, Lx Lo= A is the spatial scale for satellite
observation. '

The analytical form of the sampling error
from satellite observations for the WGR model
was derived by Graves et al. (1993), which is

2 1 87O,D* oAt
&y = < —

’r o 2

(2’2 —(2’2

ap

Ao goom B
{2 { fcoth( 3 ) —a coth( 5 )+ 1> (%)

Graves et al. (1993} also derived the equation
for the sampling error from raingauge networks
for the WGR model, which is

2.4 8TDPar o expfaT DHr +m) NP
TP a 2 [ +47°6/ AP

+20,afA f* —a? i expRr(D? + )t + ) NP

am=l

{—coth(%) — L+ 20052 +63)

ni=l

(10)

where @ =v n+v m. As it is difficult to es-

timate the variance of the continuous rainfall
field, we also had better replace it by the vari-
ance of area averaged ficld, cri , which can be

expressed such as,

Ca +4:r2®2/N2][,6’2+4752®2/N2]>
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ol=g? ”' J' GA v LG (3, L3S (v [ )bV df

(11

Also, for the WGR model, the variance of the
area average rainfall can be derived:

o} =LL2[41D291 +(B-a)hl+(f-a)d, (12}

Seasonal variation of the sampling errors both
from raingauge networks and from satellite ob-
servations is investigated by estimating the
sampling error using the WGR model with the
parameters cstimated monthly and also region-
ally in the previous section. The size of the
sampling domain is assumed to be 160km x
160km considering the size of the Han River
Basin. Total 56 raingauges are also located
evenly over the basin (Al =20km ). The revisit
interval of satellite observation is assumed to be
12 hours, and total sampling duration for both
cases is assumed to be one month (720 hours).

The sampling errors estimated are summa-
rized in Figures 1 and 2 for the mountain area
and the plain area, respectively. The sampling
error for the whole basin is more or less the
same as the arithmetic average of the two. In
these figures we also plotted the sampling errors
for the combined sampling case using both the
raingauge network and the satellite. The sam-
pling errors for the combined sampling case can
be easily estimated as a harmonic mean of both
from satellite and raingauge network (North et
al., 1991; Graves et al., 1993).

As can be seen from Figures | and 2, the
variation of sampling errors is not so obvious
compare to the rainfall seasonality. If not con-
sidering the casec of October, we may say there
exists a slight seasonality of the sampling errors
as those for July are a little higher than those for
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Figure 2. . Sampling Error (Plain Area)

other months. However, the sampling errors
estimated for October, then is a dry month, are
much higher than those for July, also those for
May, also a dry month, are similar to those for
July.

The reason of this somewhat unexpected re-
sult may be found in the characteristics of rain-
fall both 1n time and space. Obviously, the sam-
pling error is estimated not simply by consider-
ing the rainfall amounts, but by considering all
the mechanisms controlling the rainfall propaga-
tion along with its generation and decay. Thus,
the sampling errors estimated differently from
the seasonal pattern of monthly rainfall amounts
may be understood as results considering dif-
ferent rainfall mechanisms. Quite interestingly,
even though there is an obvious seasonality in
the monthly rainfall amounts observed in the
Korean Peninsula, the major mechanism of
moisture source to the Korean Peninsula is ob-

viously different each month.

First, before the beginning of the Monsoon
season, which lasted about a month from the end
of June, the Korea Peninsula receives only the
scattered shower to leave the land in a dry con-
dition. However, after the Monsoon begins, the
Korean Peninsula receives large amount of rains
generally covering the whole Peninsula along
with long rainfall duration, sometimes lasted for
several days. And, from the end of July after the
Monsoon season has ended, the Korean Penin-
sular once again receives only the scattered
shower but with much higher intensity than that
in June. It also lasted almost one month just
before the end of August, when the typhoen
season begins. More or less ten typhoons have
been reached the Korea Peninsula, among which
three or four cross the Peninsula. Finally, at the
end of September another dry season begins
with scattered showers but with much less in-
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tensity than that in June.
4. CONCLUSIONS

In this study, we characterized the seasonal
variation of sampling errors in the Han River
Basin using the WGR model. The characteriza-
tion of sampling errors was done for each month
and also for the downstreamn plain area and the
upstream mountain area, separately. As results
of the study we conclude:

{1) The pattern of sampling errors estimated
are obviously different from the seasonal pattern
of monthly rainfall amounts. This result may be
understood from the fact that the sampling error
is estimated not simply by considering the rain-
fall amounts, but by considering all the mecha-
nisms controlling the rainfall propagation along
with its generation and decay. As the major
mechanism of moisture source to the Korcan
Peninsula is obviously different each month, it
seems rather normal to provide different pattern
of sampling errors from that of monthly rainfall
amounts.

(2) The sampling errors estimated for the up-
stream mountain area is about twice higher than
those for the down stream plain area. It is be-
lieved to be because of the higher variability of
rainfall in the upstream mountain arca than in
the down stream plain area. This has also been
revealed in the parameters estimated. That is,
the number of storms in the upstream mountain
area was estimated significantly higher than that
in the downstream plain area, but the cell inten-
sity a little lower. Thus, more frequent but less
intense storms in the mountain area can be ex-
pected due to the orographic effect, but the total
amount of rainfall in a given period still remains

almost the same.
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