DOI QR코드

DOI QR Code

Comparison and Analysis of Observation Data of Rainfall Sensor for Vehicle and Rainfall Station

차량용 강우센서와 강우관측소 관측자료 비교분석

  • 이충대 (한국수자원조사연구원 영산강조사실) ;
  • 이병현 (국립강원대학교 도시환경.재난관리 전공) ;
  • 조형제 (한국수자원조사연구원 영산강조사실) ;
  • 김병식 (국립강원대학교 도시환경.재난관리 전공)
  • Received : 2018.10.01
  • Accepted : 2018.11.05
  • Published : 2018.12.01

Abstract

The biased estimation of low density rainfall network and radar rainfall has limited application to extreme rainfall in a small area. To improve this, more rainfall information needs to be produced. In this study, we analyzed the applicability of the vehicle rainfall sensor developed and used recently. The developed rainfall sensor was attached to the vehicle to observe the rainfall according to the movement of the vehicle. The analytical method used time series and average rainfall values for observations of rainfall sensors and nearby rainfall stations. The results show that the trend of observed values according to rainfall events shows a certain pattern. It is analyzed that it is caused by various causes such as the difference between the observation position of the rainfall sensor and the nearby rainfall station, the moving speed of the vehicle, and the rainfall observation method. This result shows the possibility of rainfall observation using a rainfall sensor for a vehicle, and it is possible to observe rainfall more precisely through experiments and improvement of rainfall sensors in various conditions in the future.

낮은 밀도의 강우관측망과 레이더 강우의 편향적인 추정은 좁은 지역에서 발생하는 돌발홍수에 대한 적용에는 한계가 있다. 이를 개선하기 위해서는 더 많은 강우정보의 생산이 필요하다. 본 연구에서는 최근에 개발되어 활용되고 있는 차량용 강우센서를 이용하여 적용성을 분석하였다. 개발된 강우센서를 차량에 부착하여 차량의 이동에 따른 강우 관측을 수행하였다. 분석 방법은 강우센서와 인근 강우관측소의 관측값에 대하여 시계열 및 평균 강수량을 이용하였다. 차량별로 부착된 센서(1~10번)의 관측 강우를 분석한 결과 전체적으로 센서별로 상대적으로 차이가 발생하고 있으나 강우 사상에 따른 관측값의 경향은 일정한 패턴을 나타내고 있는 것을 알 수 있었다. 이는 강우센서의 관측위치와 인근 강우관측소와의 거리 차이, 차량의 이동 속도, 강우관측 방법 등 다양한 원인에 의해 발생하는 것으로 분석되었다. 이 결과는 차량용 강우센서를 이용한 강우관측의 가능성을 보여주었으며 향후 다양한 조건에서의 실험 및 강우센서 개선을 통하여 보다 정밀한 강우관측이 가능할 것으로 검토되었다.

Keywords

TMHHC2_2018_v38n6_783_f0001.png 이미지

Fig. 1. Study Area and Sites Using This Study

TMHHC2_2018_v38n6_783_f0002.png 이미지

Fig. 2. Operating Principle of Vehicle Rain Sensor

TMHHC2_2018_v38n6_783_f0003.png 이미지

Fig. 3. Observation Radar Image by Rain Sensor

TMHHC2_2018_v38n6_783_f0004.png 이미지

Fig 4. Rain Sensor and Station Rainfall Comparison

TMHHC2_2018_v38n6_783_f0005.png 이미지

Fig 4. Rain Sensor and Station Rainfall Comparison (Continue)

TMHHC2_2018_v38n6_783_f0006.png 이미지

Fig 4. Rain Sensor and Station Rainfall Comparison (Continue)

Table 1. Comparison of Existing Rainfall Sensor and Developed Rainfall Sensor

TMHHC2_2018_v38n6_783_t0001.png 이미지

Table 2. Receiver Operating Characteristic Method

TMHHC2_2018_v38n6_783_t0002.png 이미지

Table 3. Results of Receivers Operating Characteristic

TMHHC2_2018_v38n6_783_t0003.png 이미지

Table 4. Result of Receiver Operating Characteristic

TMHHC2_2018_v38n6_783_t0004.png 이미지

References

  1. Chandrasekar, V., Wang, Y. and Chen, H. (2012). "The CASA quantitative precipitation estimation system: a five year validation study." Hydrology and Earth System Sciences, Vol. 12, pp. 2811-2820.
  2. De Jong, S. (2010). Low cost disdrometer. Master thesis report, TU Delft, Delft, the Netherlands.
  3. Diop, M. and Grimes, D. I. F. (2003). "Satellite-based rainfall estimation for river flow forecasting in Africa." II: African Easterly Waves, convection and rainfall, Hydrology Sciences Journal, Vol. 48, pp. 585-599. https://doi.org/10.1623/hysj.48.4.585.51414
  4. Haberlandt, U. and Sester, M. (2010). "Areal rainfall estimation using moving cars as rain gauges a modelling study." Hydrology and Earth System Sciences, Vol. 14, pp. 1139-2010. https://doi.org/10.5194/hess-14-1139-2010
  5. Kim, B. S., Kim, H. S. and Yang, D. M. (2010). "Comparison of spatial distributions of rainfall derived from rain gages and a radar." Journal of Wetlands Research, Vol. 12, No. 3, pp. 63-73.
  6. Kim, J. P., Lee, W. S., Cho, H. and Kim, G. (2014a). "Estimation of high resolution daily precipitation using a modified PRISM model." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 4, pp. 1139-1150 (in Korean). https://doi.org/10.12652/Ksce.2014.34.4.1139
  7. Kim, S. J., Shin, S. C. and Suh, A. S. (1999). "Satellite rainfall monitoring: recent progress and its potential applicability." Korean Journal of Agricultural and Forest Meteorology, Vol. 1, No. 2, pp. 142-150 (in Korean).
  8. Lee, S. H., Kim, Y. G. and Kim, B. S. (2017). "Develoment of rainfall information production technolohy using the optical signal of wundshield rain sensors." An International Interdisciplinary Journal, Vol. 20, No. 6(B), pp. 4521-4533.
  9. Lee, S. H., Kim, Y. G. and Kim, B. S. (2017). "Development of relationship equation for vehicle sensor signal and observed rainfall." Journal Korea Water Resour. Assoc., Vol. 49, No. 1, pp. 29-35 (in Korean). https://doi.org/10.23633/JKWRA.2016.49.1.29
  10. Leijnse, H., Uijlenhoet, R. and Stricke, J. N. M. (2007). "Rainfall measurement using radio links from cellular communication networks." Water Resources Research, Vol. 43, No. 10, pp. 1029-1056.
  11. Rabiei, E., Haberlandt, U., Sester, M. and Fitzner, D. (2013). "Rainfall estimation using moving cars as rain gauges laboratory experiments." Hydrol and Earth System Sciences, Vol. 17, pp. 4701-4712. https://doi.org/10.5194/hess-17-4701-2013
  12. Seo, G. D., Sung, T. R., Lee, K. W. and Ji, Y. C. (2013). "Development of a precipitation gauge using ultrasonic measuring technique." Journal of the Korea Institute of Information and Communication Engineering, Vol. 17, No. 11, pp. 2745-2752 (in Korean). https://doi.org/10.6109/jkiice.2013.17.11.2745
  13. Verworn, A. and Haberlandt, U. (2011). "Spatial interpolation of hourly rainfall - effect of additional information." variogram inference and storm properties, Hydrol and Earth System Sciences, Vol. 15, pp. 569-584. https://doi.org/10.5194/hess-15-569-2011