• 제목/요약/키워드: rainfall forecasting

검색결과 328건 처리시간 0.03초

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

다변량 통계분석을 이용한 남부 내륙지역 태풍피해예측모형 개발 (Development of Typhoon Damage Forecasting Function of Southern Inland Area By Multivariate Analysis Technique)

  • 김연수;김태균
    • 한국습지학회지
    • /
    • 제21권4호
    • /
    • pp.281-289
    • /
    • 2019
  • 본 연구에서는 남부 내륙지역에 속한 시군구별 태풍으로 인한 피해를 예측할 수 있는 태풍피해예측모형을 개발하였다. 내륙지역의 태풍 피해는 호우, 강풍으로 인한 피해가 복합적으로 발생하므로, 모형을 구성하는 변수가 많고 다양하나, 내륙지역 시군구 단위의 피해사례는 모형을 개발할 만큼 충분하지 않다. 태풍피해 관련 수문기상 자료는 3시간 간격 지속기간별 최대 강우량, 총강우량, 1-5일 선행강우량, 최대풍속 및 제주도 인근 지역에서의 태풍중심기압을 이용하였다. 피해자료의 부족을 고려하기 위해 군집화를 하였으며, 강우 관련 자료의 다중공선성을 제거하기 위하여 주성분분석 등 다변량 통계분석을 이용하여 권역별(경남, 경북, 전남, 전북)로 피해예측모형을 개발하였다. 모형에 의한 태풍피해추정치와 실측치는 최대 2.2배 정도까지 차이가 발생하였는데, 이는 강풍에 의한 피해를 추정하기 어렵고, 전국 69개 ASOS 관측소에 의한 강우자료가 지역적 강우특성을 제대로 반영하지 못하기 때문인 것으로 추정된다.

Analyzing effect and importance of input predictors for urban streamflow prediction based on a Bayesian tree-based model

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.134-134
    • /
    • 2022
  • Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.

  • PDF

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

관개저수지의 홍수유입량 예측 (Forecasting the Flood Inflow into Irrigation Reservoir)

  • 문종필;엄민용;박철동;김태얼
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.512-518
    • /
    • 1999
  • Recently rainfall and water evel are monitored via on -line system in real-time bases. We applied the on-line system to get the rainfall and waterlevel data for the development of the real-time flood forecasting model based on SCS method in hourly bases. Main parameters for the model calibration are concentration time of flood and soil moisture condition in the watershed. Other parameters of the model are based on SCS TR-%% and DAWAST model. Simplex method is used for promoting the accuracy of parameter estimation. The basic concept of the model is minimizing the error range between forcasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time. The flood forecasting model developed was applied to the Yedang and Topjung reservoir.

  • PDF

강우-유출모형을 이용한 실시간 홍수예측(I) : 이론과 모형화 (Real-Time Flood Forecasting Using Rainfall-Runoff Model(I) : Theory and Modeling)

  • 정동국;이길성
    • 물과 미래
    • /
    • 제27권1호
    • /
    • pp.89-99
    • /
    • 1994
  • 현재까지 국내의 홍수예측업무는 과거에 수집된 자료집단을 이용한 변수추정에 의하여 시행되고 있으나, 최근 여러 가지 순환추정 알고리즘을 적용한 홍수예측 또는 변수추정에 관한 많은 연구가 이루어지고 있다. 본 논문은 실시간 홍수예측 및 변수추정에 관한 연구로서, 특히 강우-유출모형의 상태 및 매개변수의 동시추정에 관한 추계학적 현상을 고려하였다. 홍수예측에 관한 시스템은 $\phi$ 지수에 의한 유효강우의 산정과 지체효과를 고려한 n개의 비선형 저수지모형에 의한 홍수축적으로 구성하였다. 그리고 변수추정모형과 홍수추적 모형을 상호연계하여 변수를 포함하는 확대 상태-공간모형으로 상태 및 매개변수의 동시추정에 관한 시스템을 구성하였다. 상태-공간모형에 대한 상태 및 변수추정기법으로 GLS 추정과 MAP 추정에 대하여 비교 검토하였다. 모형의 식별을 위한 민감도 분석은 추정변수의 공분산 행렬을 사용하였다.

  • PDF

Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측 (Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network)

  • 허창환;임기석
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

Forecasting Probability of Precipitation Using Morkov Logistic Regression Model

  • Park, Jeong-Soo;Kim, Yun-Seon
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2007
  • A three-state Markov logistic regression model is suggested to forecast the probability of tomorrow's precipitation based on the current meteorological situation. The suggested model turns out to be better than Markov regression model in the sense of the mean squared error of forecasting for the rainfall data of Seoul area.

적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향 (Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall)

  • 이재복;이동규
    • 대기
    • /
    • 제21권4호
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.