• Title/Summary/Keyword: radiofrequency

Search Result 372, Processing Time 0.028 seconds

Health effects of electromagnetic fields on children

  • Moon, Jin-Hwa
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.11
    • /
    • pp.422-428
    • /
    • 2020
  • In today's world, most children are exposed to various manmade electromagnetic fields (EMFs). EMFs are electromagnetic waves less than 300 GHz. A developing child's brain is vulnerable to electromagnetic radiation; thus, their caregivers' concerns about the health effects of EMFs are increasing. EMF exposure is divided into 2 categories: extremely low frequencies (ELFs; 3-3,000 Hz), involving high-voltage transmission lines and in-house wiring; and radiofrequencies (RFs; 30 kHz to 300 GHz), involving mobile phones, smart devices, base stations, WiFi, and 5G technologies. The biological effects of EMFs on humans include stimulation, thermal, and nonthermal, the latter of which is the least known. Among the various health issues related to EMFs, the most important issue is human carcinogenicity. According to the International Agency for Research on Cancer's (IARC's) evaluation of carcinogenic risks to humans, ELFs and RFs were evaluated as possible human carcinogens (Group 2B). However, the World Health Organization's (WHO's) view of EMFs remains undetermined. This article reviews the current knowledge of EMF exposure on humans, specifically children. EMF exposure sources, biological effects, current WHO and IARC opinions on carcinogenicity, and effects of EMF exposures on children will be discussed. As well-controlled EMF experiments in children are nearly impossible, scientific knowledge should be interpreted objectively. Precautionary approaches are recommended for children until the potential health effects of EMF are confirmed.

Investigation of Photoelectrochemical Water Splitting for Mn-Doped In2O3 Film

  • Sun, Xianke;Fu, Xinhe;You, Tingting;Zhang, Qiannan;Xu, Liuyang;Zhou, Xiaodong;Yuan, Honglei;Liu, Kuili
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.733-738
    • /
    • 2018
  • Undoped and Mn-doped $In_2O_3$ films were prepared by radiofrequency magnetron sputtering technique. The effects of Mn doping on the structural and optical properties of as-prepared films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. Mn doping can enhance the intensity of (222) peak in Mn-doped $In_2O_3$ thin film, indicating Mn dopant promotes preferred orientation of crystal growth along (222) plane. XPS analyses revealed that the doped Mn ions exist at + 2 oxidation states, substituting for the $In^{3+}$ sites in the $In_2O_3$ lattice. UV-Vis measurements show that the optical band gap $E_g$ decreases from 3.33 to 2.87 eV with Mn doping in $In_2O_3$, implying an increasing sp-d exchange interaction in the film. Our work demonstrates a practical means to manipulate the band gap energy of $In_2O_3$ thin film via Mn impurity doping, and significantly improves the photoelectrochemical activity.

Successful Outcome of an Elderly Patient with Small Cell Lung Cancer with only Alternative Treatments: A Case Report

  • Lee, Sanghun;Joo, Jeonghyun;Chon, Songha
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.171-176
    • /
    • 2018
  • Background: Small cell lung cancer (SCLC) tends to grow more rapidly and spread much faster than non-small cell lung cancer (NSCLC). A concurrent combination of chemotherapy and thoracic radiotherapy is suggested as the standard conventional treatment, but it is more challenging for elderly patients having pulmonary and cardiovascular comorbidities. Case presentation: Here we present a case of an 80-year-old male, current smoker diagnosed with SCLC in limited stage T3N0M0 (36mm right upper lobe, satellite nodule) in Dec, 2015. The standard concurrent chemoradiotherapy was not available for his comorbidities, which included chronic obstructive pulmonary disease (COPD) and angina pectoris. Furthermore, he and his family refused the recommended chemotherapy or radiotherapy exclusively. Alternatively, he received various non-conventional treatments including local radiofrequency hyperthermia, mistletoe, and Traditional Korean medicine including acupuncture, moxibustion and herbs since Jan. 2016. Despite the progression in primary tumor size, there have been no other distant relapse so far, and the patient has been in stable condition ever since. Conclusion: We suggest that a combination of various alternative treatments could be a candidate for elderly patients intolerable to conventional cytotoxic treatments.

2018 심방세동 카테터 절제술 대한민국 진료지침: Part II

  • Yu, Hui-Tae;Jeong, Dong-Seop;Park, Hui-Nam;Park, Hyeong-Seop;Kim, Ju-Yeon;Kim, Jun;Lee, Jeong-Myeong;Kim, Gi-Hun;Yun, Nam-Sik;No, Seung-Yeong;O, Yong-Seok;Jo, Yeong-Jin;Shim, Jaemin
    • International Journal of Arrhythmia
    • /
    • v.19 no.3
    • /
    • pp.235-284
    • /
    • 2018
  • In this part the writing group will cover strategies, techniques, and endpoints of atrial fibrillation (AF) ablation. Prior to all, electrical isolation of the pulmonary veins is recommended during all AF ablation procedures. In addition, techniques to be used for ablation of persistent and long-standing persistent AF, adjunctive ablation strategies, nonablative strategies to improve outcomes of AF ablation, and endpoints for ablation of paroxysmal, persistent, and long-standing persistent AF will be reviewed. Currently many technologies and tools are employed for AF ablation procedures. Radiofrequency energy, cryoablation, and other energy sources and tools are in various stages of development and/or clinical investigation. Finally, anticoagulation strategies pre-, during, and postcatheter ablation of AF and technical aspects of ablation to maximize safety are discussed in this section.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.

Endoscopic Therapy for Pancreatic Benign Neoplasms (췌장 양성 종양의 내시경적 치료)

  • Hwang, Jun Seong;Ko, Sung Woo
    • Journal of Digestive Cancer Reports
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • Since Endoscopic ultrasound (EUS) was introduced in the 1980s, EUS has evolved from a diagnostic tool to a therapeutic modality for patients with pancreatic neoplasms. Traditionally, treatment policy of pancreatic benign neoplasms (PBN) has been a dichotomous approach to observation or surgery. However, EUS guided treatment provides an alternative option with minimally invasiveness for patients with PBN. This review aimed to provide the role of EUS guided treatment for PBN.

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays

  • Yin, Xuetong;Li, Nan;Jia, Sen;Zhang, Xiaoliang;Li, Ye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.229-251
    • /
    • 2021
  • Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.

Electroabsorption modulator-integrated distributed Bragg reflector laser diode for C-band WDM-based networks

  • Oh-Kee Kwon;Chul-Wook Lee;Ki-Soo Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.163-170
    • /
    • 2023
  • We report an electroabsorption modulator (EAM)-integrated distributed Bragg reflector laser diode (DBR-LD) capable of supporting a high data rate and a wide wavelength tuning. The DBR-LD contains two tuning elements, plasma and heater tunings, both of which are implemented in the DBR section, which have blue-shift and red-shift in the Bragg wavelength through a current injection, respectively. The light created from the DBR-LD is intensity-modulated through the EAM voltage, which is integrated monolithically with the DBRLD using a butt-joint coupling method. The fabricated chip shows a threshold current of approximately 8 mA, tuning range of greater than 30 nm, and static extinction ratio of higher than 20 dB while maintaining a side mode suppression ratio of greater than 40 dB under a window of 1550 nm. To evaluate its modulation properties, the chip was bonded onto a mount including a radiofrequency line and a load resistor showing clear eye openings at data rates of 25 Gb/s nonreturn-to-zero and 50 Gb/s pulse amplitude modulation 4-level, respectively.

A Real-Time Surveillance System for Vaccine Cold Chain Based o n Internet of Things Technology

  • Shao-jun Jiang;Zhi-lai Zhang;Wen-yan Song
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.394-406
    • /
    • 2023
  • In this study, a real-time surveillance system using Internet of Things technology is proposed for vaccine cold chains. This system fully visualizes vaccine transport and storage. It comprises a 4G gateway module, lowpower and low-cost wireless temperature and humidity collection module (WTHCM), cloud service software platform, and phone app. The WTHCM is installed in freezers or truck-mounted cold chain cabinets to collect the temperature and humidity information of the vaccine storage environment. It then transmits the collected data to a gateway module in the radiofrequency_physical layer (RF_PHY). The RF_PHY is an interface for calling the bottom 2.4-GHz transceiver, which can realize a more flexible communication mode. The gateway module can simultaneously receive data from multiple acquisition terminals, process the received data depending on the protocol, and transmit the collated data to the cloud server platform via 4G or Wi-Fi. The cloud server platform primarily provides data storage, chart views, short-message warnings, and other functions. The phone app is designed to help users view and print temperature and humidity data concerning the transportation and storage of vaccines anytime and anywhere. Thus, this system provides a new vaccine management model for ensuring the safety and reliability of vaccines to a greater extent.

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.