DOI QR코드

DOI QR Code

Electroabsorption modulator-integrated distributed Bragg reflector laser diode for C-band WDM-based networks

  • Oh-Kee Kwon (Photonic Convergence Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Chul-Wook Lee (Photonic Convergence Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Ki-Soo Kim (Photonic Convergence Components Research Group, Electronics and Telecommunications Research Institute)
  • 투고 : 2021.08.30
  • 심사 : 2021.12.28
  • 발행 : 2023.02.20

초록

We report an electroabsorption modulator (EAM)-integrated distributed Bragg reflector laser diode (DBR-LD) capable of supporting a high data rate and a wide wavelength tuning. The DBR-LD contains two tuning elements, plasma and heater tunings, both of which are implemented in the DBR section, which have blue-shift and red-shift in the Bragg wavelength through a current injection, respectively. The light created from the DBR-LD is intensity-modulated through the EAM voltage, which is integrated monolithically with the DBRLD using a butt-joint coupling method. The fabricated chip shows a threshold current of approximately 8 mA, tuning range of greater than 30 nm, and static extinction ratio of higher than 20 dB while maintaining a side mode suppression ratio of greater than 40 dB under a window of 1550 nm. To evaluate its modulation properties, the chip was bonded onto a mount including a radiofrequency line and a load resistor showing clear eye openings at data rates of 25 Gb/s nonreturn-to-zero and 50 Gb/s pulse amplitude modulation 4-level, respectively.

키워드

과제정보

This work was supported by the Korea Innovation Foundation funded by Korea Government (MSIT) (no. 2021-DD-RD-0082, Commercialization of 8 wavelength DBR-EAM chip with modulation rate of 25 Gb/s per channel), the ICT R&D program MSIP/IITP (no. 2020-0-00847, Development of 5G+ mobile fronthaul transport technology), and the Electronics and Telecommunication Research Institute Grant funded by the Korea Government (no. 21YB1810/21EB1210, Development of DBR-EAM LD chip technology for commercialization).

참고문헌

  1. J. Shin, S. Hong, J. Y. Lim, S. Cho, H. Y. Rhy, and G. Y. Yi, CWDM network with dual sub-channel interface for mobile fronthaul and backhaul deployment, (16th International Conference on Advanced Communication Technology, Pyeongchang, Rep. of Korea), Feb. 2014, pp. 1009-1102. 
  2. J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J. P. Elbers, R. Cush, M. J. Wale, and I. H. White, Athermal colorless C-band optical transmitter system for passive optical networks, J. Lightwave Technol. 32 (2014), no. 22, 4253-4260.  https://doi.org/10.1109/JLT.2014.2354058
  3. I. A. Alimi, A. L. Teixeira, and P. P. Monterio, Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies requirements, challenges, and solutions, IEEE Commun. Surv. Tutorials 20 (2018), no. 1, 708-769.  https://doi.org/10.1109/COMST.2017.2773462
  4. B. S. Choi, S. H. Oh, K. S. Kim, K. H. Yoon, H. S. Kim, M. R. Park, J. S. Jeong, O. K. Kwon, J. K. Seo, H. K. Lee, and Y. C. Chung, 10-Gb/s direct modulation of polymer-based tunable external cavity lasers, Opt. Express 20 (2012), no. 18, 20368-20375.  https://doi.org/10.1364/OE.20.020368
  5. D. Zhou, S. Liang, L. Zhao, H. Zhu, and W. Wang, High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers, Opt. Express 25 (2017), no. 3, 2341-2346.  https://doi.org/10.1364/OE.25.002341
  6. O. K. Kwon, C. W. Lee, K. S. Kim, S. H. Oh, and Y. A. Leem, Proposal of novel structure for wide wavelength tunable in distributed bragg reflector laser diode with single grating mirror, Opt. Express 26 (2018), no. 22, 28704-28712.  https://doi.org/10.1364/OE.26.028704
  7. M. Yamaguchi, M. Kitamura, S. Murata, I. Mito, and K. Kobayashi, Wide range wavelength tuning in 1.3 μm DBR-DCPBH-LDs by current injection into the DBR region, Electron. Lett. 21 (1985), no. 2, 63-65.  https://doi.org/10.1049/el:19850044
  8. S. H. Oh, O. K. Kwon, K. S. Kim, and C. W. Lee, 1.3-μm and 10-Gb/s tunable DBR-LD for low-cost application of WDM-based mobile front haul networks, Opt. Express 27 (2019), no. 20, 29241-29247.  https://doi.org/10.1364/OE.27.029241
  9. T. Shindo, N. Fujiwara, Y. Ohiso, T. Sato, and H. Matsuzaki, Quasi-continuous tuning of a 1.3-μm-wavelength superstructure grating distributed bragg reflector laser by enhancing carrierinduced refractive index change, Opt. Express 29 (2021), no. 1, 232-243.  https://doi.org/10.1364/OE.411401
  10. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, Chirp-managed directly modulated laser (CML), IEEE Photon. Technol. Lett. 18 (2006), no. 2, 385-387.  https://doi.org/10.1109/LPT.2005.862358
  11. A. S. Kara, J. C. Cartledge, J. Harley, and K. Roberts, Electronic pre-compensation for 10.7Gb/s system employing a directly modulated laser, J. Lightwave Technol. 29 (2011), no. 13, 2069-2076.  https://doi.org/10.1109/JLT.2011.2153179
  12. K. Kwon, J. Yoon, and H. M. Bae, A 6 Gb/s transceiver with a nonlinear electronic dispersion compensator for directly modulated distributed-feedback lasers, IEEE J. Solid-State Circuits 50 (2015), no. 2, 503-514.  https://doi.org/10.1109/JSSC.2014.2361354
  13. O. K. Kwon, H. S. Cho, C. W. Lee, S. H. Oh, Y. A. Leem, and E. S. Nam, 10-Gb/s 1.59-μm DFB-LD transmission over 20 km SMF with no compensation, IEEE Photon Technol. Lett. 28 (2016), no. 4, 509-512.  https://doi.org/10.1109/LPT.2015.2500558
  14. O. K. Kwon, Y. S. Baek, and Y. C. Chung, Electroabsorption modulated laser with high immunity to residual facet reflection, IEEE J. Quantum Electron. 48 (2012), no. 9, 1203-1213.  https://doi.org/10.1109/JQE.2012.2206799
  15. O. K. Kwon, Y. S. Baek, Y. C. Chung, and H. M. Park, Proposal and analysis of distributed reflector-laser diode integrated with an electroabsorption modulator, ETRI J. 35 (2013), no. 3, 459-468.  https://doi.org/10.4218/etrij.13.0112.0305
  16. L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs, Opt. Express 22 (2014), no. 24, 30368-30376.  https://doi.org/10.1364/OE.22.030368
  17. N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J. Elbers, J. J. V. Olmos, and I. T. Monroy, Evaluation of real-time 8×56.25 Gb/s (400G) PAM-4 for inter-data center application over 80 km of SSMF at 1550 nm, J. Lightwave Technol. 35 (2017), no. 4, 955-962.  https://doi.org/10.1109/JLT.2016.2617283
  18. J. H. Lee, S. H. Chang, J. Y. Huh, S. K. Kang, K. Kim, and J. K. Lee, EML based real-time 112Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications, Opt. Fiber Technol. 45 (2018), 141-145.  https://doi.org/10.1016/j.yofte.2018.06.007
  19. M. Y. Park, B. W. Kim, M. Moehrle, U. Troppenz, W. Rehbein, A. Sigmund, and S. J. Hong, Liquid crystal filter based tunable transmitter for 25Gps wavelength division multiplexing-passive optical network fronthaul, Opt. Express 28 (2020), no. 26, 38942-38948.  https://doi.org/10.1364/OE.411907
  20. O. K. Kwon, C. W. Lee, S. H. Oh, and K. S. Kim, 16-channel tunable and 25-Gb/s EAM-integrated DBR-LD for WDM-based mobile front-haul networks, Opt. Express 29 (2021), no. 2, 1805-1812.  https://doi.org/10.1364/OE.414989
  21. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters, John Wiley & Sons Ltd, England, 2003. 
  22. O. K. Kwon, Y. T. Han, Y. S. Baek, and Y. C. Chung, Improvement of Modulation Bandwidth in Electroabsorption-Modulated Laser by Utilizing the Resonance Property in Bonding Wire, Opt. Express 20 (2012), no. 11, 11806-11812. https://doi.org/10.1364/OE.20.011806