• Title/Summary/Keyword: radioactive waste repository

Search Result 322, Processing Time 0.02 seconds

Current Status of Nuclear Waste Management (and Disposal) in the United States

  • McMahon, K.;Swift, P.;Nutt, M.;Birkholzer, J.;Boyle, W.;Gunter, T.;Larson, N.;MacKinnon, R.;Sorenson, K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The United States Department of Energy (US DOE) is conducting research and development (R&D) activities under the Used Fuel Disposition Campaign (UFDC) to support storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. R&D activities are ongoing at nine national laboratories, and are divided into storage, transportation and disposal. Storage R&D focuses on closing technical gaps related to extended storage of UNF. Transportation R&D focuses on ensuring transportability of UNF following extended storage, and addressing data gaps regarding nuclear fuel integrity, retrievability, and demonstration of subcriticality. Disposal R&D focuses on identifying geologic disposal options and addressing technical challenges for generic disposal concepts in mined repositories in salt, clay/shale, and granitic rocks, and deep borehole disposal. UFDC R&D goals include increasing confidence in the robustness of generic disposal concepts, reducing generic sources of uncertainty that may impact the viability of disposal concepts, and developing science and engineering tools to support the selection, characterization, and licensing of a repository. The US DOE has also initiated activities in the Nuclear Fuel Storage and Transportation (NFST) Planning Project to facilitate the development of an interim storage facility and to support transportation infrastructure in the near term.

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.

A Sensitivity Study on Nuclide Release from the Near-field of the Pyroprocessed Waste Repository System: Part 1. A Probabilistic Approach (파이로처리 폐기물 처분 시스템 근계 영역 내 핵종 유출 민감도: 제 1 부 확률론적 접근)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.19-35
    • /
    • 2014
  • A parametric sensitivity to the annual exposure dose rate to the farming exposure group has been probabilistically carried out for three principal elements associated with the nuclide transport behavior in the near-field of the pyroprocessed waste repository system. Credit time for both metal and ceramic containers, annual nuclide release rete, and the degree of loss of bentonite buffer around the container are selected as the elements and investigated for important nuclides. All the elements are shown to be sensitive to the results. Methodology studied through this study and the results are expected to make a good feedback to the repository design. As a follow-up study, separated in Part 2, the A-KRS will be deterministically assessed and then compared among each other with the normal, the worst, and the best case scenarios associated with their extreme values these elements could have.

A Study on Japanese Experience to Secure the Interim Storage Facility for Nuclear Spent Fuel (일본의 사용후핵연료 중간저장 시설 확보 경험에 관한 연구 - 아오모리현 무쯔시 사례 -)

  • Kim, Kyung-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.351-357
    • /
    • 2007
  • The Japanese Government selected Mutsu, Aomori Prefecture as a provisional spent-fuel repository site. This comes as a result of the prefecture's five-year campaign to host the site since 2000. Korea stores spent nuclear fuel within sites of nuclear power plants, and expects the storage capacity to reach its limit by the year 2016. This compels Korea to learn the cases of Japan. Having successfully hosted Gyeongju as a site for low-to-intermediate-level nuclear waste repository, Korea has already learned the potential process of hosting spent fuel storage site. The striking difference between the two countries in the process of hosting the site is that the Korean government had to offer the local city a large amount of subsidy for hosting through competitive citizens' referendum among candidate cities while it was the leadership of the local municipality that enabled the controversial decision in Japan. It is also a distinguishable characteristics of Japan that not a huge subsidy is provided to the local host city. I hope this study offers an idea to Korea's future effort to select a spent-fuel host site.

  • PDF

Engineering-scale Validation Test for the T-H-M Behaviors of a HLW Disposal System (고준위폐기물 처분시스템의 열적-수리적-역학적 거동 규명을 위한 공학적 규모의 실증시험)

  • Lee Jae-Owan;Park Jeong-Hwa;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.197-207
    • /
    • 2006
  • The engineering performance of a high level waste repository is significantly dependent upon the T-H-M behavior in the engineered barrier system. An engineering-scale test facility (KENTEX) was set up to validate the T-H-M behaviors in the buffer of a reference disposal system developed in the 2002. The validation tests started on May 31, 2005 and is now in progress. The KENTEX facility and validation test programme are introduced, and pre-operation calculations are also presented to give information on the sensitive location of sensors and operational conditions. This test will provide information (e.g., large-scale apparatus, sensors, monitoring system etc.) needed for 'in-situ' tests, make the validation of a T-H-M model for the T-H-M performance assessment of the reference disposal system, and demonstrate the engineering feasibility of fabricating and emplacing the buffer of a repository.

  • PDF

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.

A Numerical Model for Nuclide Migration in the Far-field of the Repository (처분장 Far-field에서의 핵종이동 수치 모델)

  • Lee, Youn-Myoung;Lee, Han-Soo;Park, Heui-Joo;Cho, Won-Jin;Han, Kyong-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.267-276
    • /
    • 1989
  • A numerical model for nuclide migration through fractured rock media has been developed. Nuclide transport with groundwater in rock fissures and the diffusion of nuclides into rock matrix are considered one-dimensionally . In the safety assessment of the repository for radioactive waste, this one-dimensional model by the finite-difference scheme, which enables us not only to use more realistic boundary conditions but also to model the nonhomogeneous rock medium as the multilayered media, can be used effectively with the analytical mode. The solution by the numerical model will be verified analytically, and then extended to the double-layered rock medium transport model.

  • PDF

THM Coupling Analysis for Decovalex-2015 Task B2 (Decovalex-2015 Task B2를 위한 THM 해석기법 개발 및 적용)

  • Kwon, Sangki;Lee, Changsoo;Park, Seung-Hun
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.556-567
    • /
    • 2015
  • The evaluation of THM coupling behavior in deep underground repository condition is essential for the long term safety and stability assessment of high-level radioactive waste repository. In order to develop reliable THM analysis techniques effectively, an international cooperation project, DECOVALEX, is carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment planned to be conducted by JAEA was modeled by the research teams from the participating countries. In this study, a THM coupling technique combining TOUGH2 and FLAC was developed and applied to 1 dimensional THM modeling, in which rock, buffer, and heater are considered. The results were compared with those from other research teams.

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water

  • Rajala, P.;Raulio, M.;Carpen, L.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.221-227
    • /
    • 2019
  • During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.