DOI QR코드

DOI QR Code

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400

액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구

  • 손영주 (한국전력국제원자력대학원대학교) ;
  • 이승엽 (한국원자력연구원) ;
  • 정재연 (한국전력국제원자력대학원대학교) ;
  • 김창락 (한국전력국제원자력대학원대학교)
  • Received : 2018.11.05
  • Accepted : 2019.02.20
  • Published : 2019.03.31

Abstract

A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.

원자력발전소 운영 과정에서 발생되는 폐기물인 폐수지를 원천적으로 저감하기 위해, 새로운 폐수 정화기술을 개발하고 원전 폐수처리시스템에 가상적으로 적용하여 효용성을 평가하고자 하였다. 본 기술의 기본 원리는 폐수에 존재하는 주요 핵종이온들을 생물학적 혹은 화학적 방법을 통해 무기 결정광물로 바꾸는 방식이다. 실험실에서 폐수를 대상으로 회분식실험을 통해 핵종 제거율을 측정한 결과, 생물학적 방법은 24시간 이내에 세슘을 80% 이상 제거하였고, 화학적 방법은 95% 이상 세슘을 선택적으로 제거할 수 있었다. 그리고 원전 폐수에 존재하는 다른 주요 핵종들(Co, Ni, Fe, Cr, Mn, Eu)에 대해서도 초기 99% 이상의 높은 제거율을 보여 주었다. 우리는 APR1400 원자력발전소의 폐수처리시스템 공정에서 역삼투압(R/O)과 유기 이온교환수지 모듈 사이에 가상으로 본 기술 모듈을 설치하였다. 가상의 모듈 설치를 통한 기술적 타당성 평가를 통해, 우리는 폐수의 주요 핵종들이 90% 이상 선택적으로 제거되고 폐수지의 발생량이 대폭 감소된다는 결과를 얻을 수 있었다. 이러한 결과가 의미하는 바는 본 기술이 향후 미래에 상용화되었을 경우, 폐수지 관리 비용을 크게 감소시키고 수지 수명도 대폭 연장시킬 수 있어, 결과적으로 월성 방사성폐기물 처분시설의 저장고 포화시점을 최대한 늦출 수 있는 이점이 있다.

Keywords

References

  1. Korea Electric Power Corporation and Korea Hydro & Nuclear Power Co. Ltd., APR1400 Design Control Document Tier 2, Chapter 1 - Introduction and General Description of The Plant, APR1400-k-X-FS-14002-NP Rev. 0 (2014).
  2. Nuclear Safety and Security Commission, Radiation Protection Standards, NSSC Notice No. 2017-36 (2017).
  3. D. Hendricks, Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological, 1st Ed., 512-513, CRC Press, Florida (2010).
  4. D.H. Shin, K.W. Ju, S.I. Cheong, and J.W. Rhim, "Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin", Appl. Chem. Eng., 27(6), 633-638 (2016). https://doi.org/10.14478/ace.2016.1098
  5. Korea Hydro & Nuclear Power Co. Ltd., Final Safety Analysis Report for Shin Kori 3&4 (2010).
  6. Korea Hydro & Nuclear Power Co. Ltd., Final Safety Analysis Report for Shin Wolsong 1&2 (2011).
  7. Korea Hydro & Nuclear Power Co. Ltd., Final Safety Analysis Report for Yonggwang 5&6 (2001).
  8. Korea Hydro & Nuclear Power Co. Ltd., Final Safety Analysis Report for Ulchin 5&6 (2003).
  9. H.Y. Yang, J.S. Won, Y.K. Choi, G.I. Park, I.T. Kim, K.W. Kim, K.C. Song, and H.S. Park, "Ion Adsorption Characteristics of IRN-150 Mixed Resin and Removal Behavior of $^{14}C$ Radionuclide from Spent Resin by Stripping Solutions", J. Korean Radioact. Waste Soc., 4(4), 373-384 (2006).
  10. K.S. Kim, S.H. Son, K.M. Song, J.H. Han, K.D. Han, and S.H. Do, "Treatment of Spent Ion-Exchange Resins from NPP by Supercritical Water Oxidation (SCWO) Process", J. Korean Radioact. Waste Soc., 7(3), 175-182 (2009).
  11. Y.K. Choi, S.G. An, D.H. Kim, J.H. Cho, H.S. Park, and H.J. Ahn "$^{14}C$ Removal Technology for the Treatment of Spent Resin from Nuclear Power Plants: A Review", Transactions of the Korean Nuclear Society Autumn Meeting, October 30-31, 2014, Pyeongchang, Republic of Korea.
  12. G.H. Sung, "Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant", J. Radiat. Ind., 9(4), 217-221 (2015).
  13. Ministry of Trade, Industry and Energy, Regulation on Calculation Criteria for Radioactive Waste Management Costs and Spent Fuel Management Fees, MOTIE Notice No. 2017-195 (2017).
  14. S.W. Long, The Incineration of Low-level Radioactive Waste: A Report for the Advisory Committee on Nuclear Waste, U.S. Nuclear Regulatory Commission, NUREG-1393, Washington, D.C. (1990).
  15. C.M. Jantzen, D.K. Peeler, and C.A. Cicero, Vitrification of Ion-exchange (IEX) Resins: Advantages and Technical Challenges, Westinghouse Savannah River Co., WSRC-MS-95-0518 (1995).
  16. D.S. Kessel and C.L. Kim, "US Policy and Current Practices for Blending Low-Level Radioactive Waste for Disposal", J. Nucl. Fuel Cycle Waste Technol., 14(3), 235-243 (2016). https://doi.org/10.7733/jnfcwt.2016.14.3.235
  17. N.S. Kamaruzaman, D.S. Kessel, and C.L. Kim, "Management of Spent Ion-Exchange Resins from Nuclear Power Plant by Blending Method", J. Nucl. Fuel Cycle Waste Technol., 16(1), 65-82 (2018). https://doi.org/10.7733/jnfcwt.2018.16.1.65
  18. S.Y. Lee, J.H. Hwang, M.H. Baik, B.K. Seo, and M. Lee. Biomineralogical Method and Apparatus for Removing Cesium Ions, Korea Atomic Energy Research Institute, KR Patent No. 10-1754790 (2017).
  19. S.Y. Lee, M.H. Baik, and J.W. Choi, "Biogenic Formation and Growth of Uraninite ($UO_2$)", Environ. Sci. Technol., 44(22), 8409-8414 (2010). https://doi.org/10.1021/es101905m
  20. S.Y. Lee, J.Y. Lee, J.H. Min, S.S. Kim, M.H. Baik, S.Y. Chung, M. Lee, and Y. Lee, "Microbial Copper Reduction Method to Scavenge Anthropogenic Radioiodine", Scientific Reports, 6, 28113 (2016). https://doi.org/10.1038/srep28113
  21. S.Y. Lee, K.H. Jung, J.E. Lee, K.A. Lee, S.H. Lee, J.Y. Lee, J.K. Lee, J.T. Jeong, and S.Y. Lee, "Photosynthetic Biomineralization of Radioactive Sr via Microalgal $CO_2$ Absorption", Bioresour. Technol., 172, 449-452 (2014). https://doi.org/10.1016/j.biortech.2014.09.023
  22. K.J. Lee, H.S. Kim, S.W. Shin, M.J. Song, and Y.K. Lee, "Preliminary Estimation of Activation Products Inventory in Reactor Components for Kori Unit 1 Decommissioning", J. Radiat. Prot. Res., 28(2), 109-116 (2003).
  23. J.S. Song, H.M. Kim, and S.H. Lee, "A Study on Radioactive Source-term Assessment Method for Decommissioning PWR Primary System", J. Nucl. Fuel Cycle Waste Technol., 12(2), 153-164 (2014). https://doi.org/10.7733/jnfcwt.2014.12.2.153
  24. J.M. Kim and C.L. Kim, "Performance Improvement of Liquid Waste Management System for APR1400", Prog. Nucl. Energy, 100, 93-102 (2017). https://doi.org/10.1016/j.pnucene.2017.05.026
  25. Nuclear Safety and Security Commission, Regulation in Delivery of Intermediate Level and Low Level Radioactive Waste, NSSC Notice No. 2017-60 (2017).
  26. U.S. National Regulatory Commission, Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors, U.S. NRC, NUREG-0017, Washington, D.C. (1985).
  27. Korea Electric Power Corporation Engineering and Construction Company, Economic Evaluation Report for Disposal Method of Wet Solid Radioactive Waste, KWQ11-00670 (2011).

Cited by

  1. A Study on the Application of Ion Crystallization Technology to the APR 1400 Liquid Waste Management System vol.17, pp.4, 2019, https://doi.org/10.7733/jnfcwt.2019.17.4.419