Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.6.221

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water  

Rajala, P. (VTT Technical Research Centre of Finland Ltd.)
Raulio, M. (European Chemicals Agency)
Carpen, L. (VTT Technical Research Centre of Finland Ltd.)
Publication Information
Corrosion Science and Technology / v.18, no.6, 2019 , pp. 221-227 More about this Journal
Abstract
During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.
Keywords
MIC; Steel; SRB; Methanogenic archaea;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Rajala, L. Carpen, M. Vepsalainen, M. Raulio, E. Huttunen-saarivirta, and M. Bomberg, Corrosion, 72, 1565 (2016).   DOI
2 P. Rajala, E. Huttunen-Saarivirta, M. Bomberg, and L. Carpen, Corros. Sci., 159, 108148 (2019).   DOI
3 P. Rajala, L. Carpen, M. Vepsalainen, M. Raulio, E. Sohlberg, and M. Bomberg, Front. Microbiol., 24, 647 (2015).
4 H. C. Flemming and S. Wuertz, Nat. Rev. Microbiol., 17, 247 (2019).   DOI
5 Sulphate-reducing Bacteria-Environmental and Engineered Systems, eds. L. L. Barton, W. A. Hamilton, ISBN 9788578110796, Cambridge University Press, Cambridge (2007).
6 G. Muyzer, E. C. De Waal, and A. G. Uitierlinden, Appl. Environ. Microbiol., 59, 695 (1993).   DOI
7 J. Geets, B. Borremans, L. Diels, D. Springael, J. Vangronsveld, D. van der Lelie, and K. Vanbroekhoven, J. Microbiol. Meth., 66, 194 (2006).   DOI
8 M. Wagner, A. J. Roger, J. L. Flax, G. A. Brusseau, and D. A. Stahl, J. Bacteriol., 180, 2975 (1998).   DOI
9 B. Hales, C. Edwards, D. Ritchie, G. Hall, R. Pickup, and J. Saunders, Appl. Environ. Microb., 62, 668 (1996).   DOI
10 U. Edwards, T. Rogall, H. Blocker, M. Emde, and E. C. Bottger, Nucleic Acids Res., 17, 7843 (1989).   DOI
11 M. Bomberg, M. Nyyssonen, P. Pitkanen, A. Lehtinen, and M. Itavaara, Biomed Res. Int., 2015, Article ID 979530 (2015).
12 P. Rajala, M. Bomberg, M. Vepsalainen, and L. Carpen, Biofouling, 33, 195 (2017).   DOI
13 L. Carpen, J. Maukonen, and S. Salo, Proc. NACE International Corrosion Conference Series, NACE (2013).
14 R. Grosskopf, P. H. Janssen, and W. Liesack, Appl. Environ. Microb., 64, 960 (1998).   DOI
15 D. A. Stahl and R. Amann, Nucleic Acid Techniques in Bacterial Systematics, pp. 205 - 248, John Wiley & Sons Ltd., Chichester, England (1991).
16 N. Bano, S. Ruffin, B. Ransom, and J. T. Hollibaugh, Appl. Environ. Microb., 70, 781 (2004).   DOI
17 S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Pace, Proc. Natl. Acad. Sci., 91, 1609-1613, USA (1994).   DOI
18 P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. van Horn, and C. F. Weber, Appl. Environ. Microb., 75, 7537-41 (2009).   DOI
19 E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glockner, Nucleic Acids Res., 35, 7188-96 (2007).   DOI
20 Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Appl. Environ. Microb., 73, 5261 (2007).   DOI
21 ASTM G 1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, West Conshohocken, PA, ASTM (1999).
22 S. Kato, Microb. Biotechnol., 9, 141 (2016).   DOI
23 R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control: An introduction to corrosion science and engineering, 4th ed., Vol. 7, ISBN 978-0-471-73279-2, WILEY-VCH Verlag GmbH, Weinheim (2008).
24 T. Uchiyama, K. Ito, K. Mori, H. Tsurumaru, and S. Harayama, Appl. Environ. Microbiol., 76, 1783 (2010).   DOI
25 H. T. Dinh, J. Kuever, M. Muszmann, A. W. Hassel, M. Stratmann, and F. Widdel, Nature, 427, 829 (2004).   DOI
26 D. Xu and T. Gu, Int. Biodeter. Biodegr., 91, 74 (2014).   DOI
27 H. Venzlaff, D. Enning, J. Srinivasan, K. J. J. Mayrhofer, A. W. Hassel, F. Widdel, and M. Stratmann, Corros. Sci., 66, 88 (2013).   DOI
28 K. Mori, H. Tsurumaru, and S. Harayama, J. Biosci. Bioeng., 110, 426 (2010).   DOI