• Title/Summary/Keyword: radioactive ions

Search Result 114, Processing Time 0.024 seconds

Sorption of aqueous uranium(VI) ion onto a cation-exchangeable K-birnessite colloid (양이온 교환능을 갖는 K-Birnessite 콜로이드에 의한 수용성 우라늄(VI) 이온의 흡착 연구)

  • Kang, Kwang-Cheol;Kim, Seung-Soo;Baik, Min-Hoon;Kwon, Soo-Han;Rhee, Seog-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • This paper describes the sorption behaviors of aqueous uranium ions on the K-birnessite. K-birnessite was synthesized by adding a concentrated HCl to an aqueous solution of $KMnO_4$. Physicochemical characteristics of the K-birnessite, such as structure, specific surface area and surface charge, were investigated. K-birnessite is a layered material and the $K^+$ ions exist in the interlayer of layered K-birnessite. BET specific surface area of the K-birnessite was 38.30 m2/g. The surface charge of K-birnessite was $-1.65\;C/m^2$ at pH 5.00 and ionic strength of 0.010 M $NaClO_4$, at which the sorption experiments of uranium ions were carried out. Uranium ions were incorporated into the interlayer of the K-birnessite by cation-exchange reaction with $K^+$ ions, and the distribution coefficient is quite similar to those of common ion-exchange materials. The results might be applicable in the retardation of migration of radioactive materials from the underground disposal site of high-level radioactive waste.

A Simple Method for the Separation of Thorium in the Analysis of Monazite (모나자이트 분석을 위한 간편한 토륨분리법)

  • Lee Chull;Chung Koo Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.5-9
    • /
    • 1971
  • A separation scheme using cation exchange procedure is designed specifically for the rapid determination of thorium in monazite samples. All the coexisting ions in monazite, including rare earth ions, are eluted with 3N hydrochloric acid. The remaining thorium is eluted from the resin column with 5N sulfuric acid prior to spectrophotometric determination with thorin reagent. The radioactive tracers and spectrophotometric methods were used to confirm the quantitative elution of thorium and also the chemical purity of the eluted thorium from the column.

  • PDF

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Gamma camera/MR dual imaging liposome labeled with radioisotope and paramagnetic ions

  • Kim, Youn Ji;Kim, Jonghee;Lee, Woonghee;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Liposomes are defined as spherical, self-closed structures formed by lipid bilayers containing aqueous phase. Most liposomes are composed of various amphipathic lipids such as phospholipids and cholesterol. We used amphipathic lipids (DPPC, DPPG) as liposome components and prepared around 100 nm liposomes by standard extrusion method. Nuclear/MR dual imaging agents based on liposome platform were prepared by adding radioactive $^{131}I$-HIB (hexadecyl-4-tributylstannylbenzoate) and Gd-DTPA into liposome bilayer and inside liposome, respectively. Gamma camera and MR imaging both showed signal increases in liver.

Desorption Characteristics of $H^{14}CO_3$ ion from Spent Ion Exchanged Resin by Solution Stripping Technology

  • Park Geun-IL;Kim In-Tae;Kim Kwang-Wook;Lee Jung-Won;Won Jang-Sik;Yang Ho-Yeon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.214-221
    • /
    • 2005
  • Spent ion-exchanged resin generated from various purification systems in CANDU reactor is causing concern due to a limited storage capacity and safe disposal. As a suggestion for a proper treatment technology for the spent ion-exchanged resin containing a high activity of C­14 radionuclide which would be classified as Class A and C wastes, a fundamental study for the development of C-14 removal technology from a spent resin was performed. The adsorption characteristics of the inactive $HCO_3^-$ ion and other ions in a stripping solution on IRN-150 mixed resin was evaluated and the removal technology of the $HCO_3^-$ ion adsorbed on IRN-150 by an alkaline stripping method was proposed.

  • PDF

A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems

  • Lotanna Ohazuruike;Kyung Jae Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1495-1506
    • /
    • 2023
  • For the safe disposal of high-level radioactive waste using Engineered Barrier Systems (EBS), bentonite buffer is used by its high swelling capability and low hydraulic conductivity. When the bentonite buffer is contacted to heated pore water containing ions by radioactive decay, chemical alterations of minerals such as illitization reaction occur. Illitization of bentonite indicates the alteration of expandable smectite into non-expandable illite, which threatens the stability and integrity of EBS. This study intends to provide a thorough review on the information underlying in the illitization of bentonite, by covering basic clay mineralogy, smectite expansion, mechanisms and observation of illitization, and illitization in EBS. Since understanding of smectite illitization is crucial for securing the safety and integrity of nuclear waste disposal systems using bentonite buffer, this thorough review study is expected to provide essential and concise information for the preventive EBS design.

The Purification of Decontamination Liquid Waste by Electrosorption (전기적 흡 . 탕착에 의한 제염폐액의 정화처리기술)

  • 정종헌;문제권;김규남;이성호;이상문
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.18-25
    • /
    • 1999
  • The study on the electrosorption of cobalt ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode, Cyclic voltammetry was investigated on a rotating-disk electrode (RDE) to determine the region of potentials within which only double-layer charging should occur. The application of an electric potential increased the sorption of the cobalt ions. The adsorbed cobalt Ions could be released into the solution by reversing the appling potential, showing the reversibility of the process.

  • PDF

Complexes of Alkaline Earth Metals with Organic Acids (알칼리토류 금속의 유기산 착물)

  • Choi, Sang Up;Kang, Hi Chun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.354-360
    • /
    • 1972
  • Formation of the complexes of barium, strontium and calcium ions with dibasic organic acid ions in dilute solution was studied at room temperature, utilizing the equilibrium exchange technique which involved the uses of radioactive alkaline earth metal ions and cation excbange resin. The organic acids used in this study were succinic and tartaric acids, and the solvents used were water, 20 % acetone-water and 20 % ethanol-water. The pH of the solutions was controlled to 7.2∼7.4, and the ionic strength of the solutions was kept at approximately 0.1. The experimental results indicated that the alkaline earths formed one-to-one complexes in solution with the dibasic acids examined, and that the relative stabilities of the complexes increased in the order: $Ba^{++}; succinic

  • PDF

Complexes of Manganese, Cobalt and Zinc with Dibasic Organic Acids in Aqueous, Ethanol-Water and Acetone-Water Solutions (망간, 코발트 및 아연과 2 염기 유기산 사이의 착물)

  • Sang Up Choi;Dong Jae Lee
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 1974
  • Solutions of $Mn^{++}, Co^{++} and Zn^{++}$ were mixed with various dibasic organic acids in the presence of cation exchange resin at room temperature. The distribution ratios of the metal ions between resin and solution were measured, using radioactive metal ions as tracer. From the observed variation of the distribution ratios with acid anion concentrations, it was concluded that $Mn^{++}, Co^{++}$ and $Zn^{++}$ formed one-to-one complexes with succinate, malonate, o-phthalate and tartrate ions in aqueous, 20 % ethanol-water and 20 % acetone-water solutions. The results of the present investigation indicated that the relative stabilities of the complexes increased in the order: $Mn^{++} < Co^{++} < Zn^{++} complexes, Succinate < malonate < o-phthalate < tartrate complexes, Aqueous < mixed solvent systems.$

  • PDF

Adsorption Mechanism of Radioactive Cesium by Prussian Blue (프러시안 블루(PB)의 방사성 세슘 흡착 메커니즘 연구)

  • Jang, Sung-Chan;Kim, Jun-Yeong;Huh, Yun Suk;Roh, Changhyun
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.127-130
    • /
    • 2015
  • Since the accident at the Fukushima Daiichi power plant, Prussian blue (PB) has attracted increasing attention as a material for use in decontaminating the environment. We have focused the fundamental mechanism of specific $Cs^+$ adsorption into PB in order to develop high-performance PB-based $Cs^+$ adsorbents. The ability of PB to adsorb Cs varies considerably according to its origin such as what synthesis method was used, and under what conditions the PB was prepared. It has been commonly accepted that the exclusive abilities of PB to adsorb hydrated $Cs^+$ ions are caused by regular lattice spaces surrounded by cyanido-bridged metals. $Cs^+$ ions are trapped by simple physical adsorption in the regular lattice spaces of PB. $Cs^+$ ions are exclusively trapped by chemical adsorption via the hydrophilic lattice defect sites with proton-exchange from the coordination water. Prussian blue are believed to hold great promise for the clean-up of $^{137}Cs$ contaminated water around nuclear facilities and/or after nuclear accidents.