DOI QR코드

DOI QR Code

A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems

  • Lotanna Ohazuruike (Department of Petroleum Engineering, University of Houston) ;
  • Kyung Jae Lee (Department of Petroleum Engineering, University of Houston)
  • Received : 2022.08.24
  • Accepted : 2023.01.08
  • Published : 2023.04.25

Abstract

For the safe disposal of high-level radioactive waste using Engineered Barrier Systems (EBS), bentonite buffer is used by its high swelling capability and low hydraulic conductivity. When the bentonite buffer is contacted to heated pore water containing ions by radioactive decay, chemical alterations of minerals such as illitization reaction occur. Illitization of bentonite indicates the alteration of expandable smectite into non-expandable illite, which threatens the stability and integrity of EBS. This study intends to provide a thorough review on the information underlying in the illitization of bentonite, by covering basic clay mineralogy, smectite expansion, mechanisms and observation of illitization, and illitization in EBS. Since understanding of smectite illitization is crucial for securing the safety and integrity of nuclear waste disposal systems using bentonite buffer, this thorough review study is expected to provide essential and concise information for the preventive EBS design.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (2021M2E1A1085193).

References

  1. V. Guimaraes, I. Bobos, Role of clay barrier systems in the disposal of radioactive waste, Sorbents.Mater.Control.Environ. Pollut (2021a) 513-541, https://doi.org/10.1016/b978-0-12-820042-1.00011-0.
  2. K.W. Chang, M. Nole, E.R. Stein, Reduced-order modeling of near-field THMC coupled processes for nuclear waste repositories in shale, Comput. Geotech. 138 (2021), https://doi.org/10.1016/j.compgeo.2021.104326.
  3. S. Kwon, C. Lee, Thermal-Hydraulic-Mechanical coupling analysis using FLAC3D-TOUGH2 for an in situ heater test at Horonobe underground research laboratory, Geosystem.Eng 22 (5) (2019) 289-298, https://doi.org/10.1080/12269328.2019.1638315.
  4. A.I. Marsh, L.G. Williams, J.A. Lawrence, The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste, Prog. Nucl. Energy 137 (2021), https://doi.org/10.1016/j.pnucene.2021.103736.
  5. P. Sellin, O.X. Leupin, The use of clay as an engineered barrier in radioactive-waste management - a review, Clay Clay Miner. 61 (6) (2014) 477-498, https://doi.org/10.1346/CCMN.2013.0610601.
  6. P. Blanc, F. Gherardi, P. Vieillard, N.C.M. Marty, H. Gailhanou, S. Gaboreau, B. Letat, C. Geloni, E.C. Gaucher, B. Made, Thermodynamics for clay minerals: calculation tools and application to the case of illite/smectite interstratified minerals, Appl. Geochem. 130 (2021), https://doi.org/10.1016/j.apgeochem.2021.104986.
  7. M.V. Villar, R.J. Iglesias, C. Gutierrez- Alvarez, B. Carbonell, Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions, Appl. Clay Sci. 160 (2018a) 49-57, https://doi.org/10.1016/j.clay.2017.12.045.
  8. J. Balagosa, S. Yoon, Y.W. Choo, Experimental investigation on small-strain dynamic properties and unconfined compressive strength of Gyeongju compacted bentonite for nuclear waste repository, KSCE J. Civ. Eng. 24 (9) (2020) 2657-2668, https://doi.org/10.1007/s12205-020-0372-z.
  9. S. Yoon, W. Cho, C. Lee, G.-Y. Kim, Thermal conductivity of Korean compacted bentonite buffer materials for a nuclear waste repository, Energies 11 (9) (2018), https://doi.org/10.3390/en11092269.
  10. F.T. Madsen, Clay mineralogical investigations related to nuclear waste disposal, Clay Miner. 33 (1) (1998) 109-129, https://doi.org/10.1180/000985598545318.
  11. D. Sun, J. Zhang, J. Zhang, L. Zhang, Swelling characteristics of GMZ bentonite and its mixtures with sand, Appl. Clay Sci. 83-84 (2013) 224-230, https://doi.org/10.1016/j.clay.2013.08.042.
  12. A. Gens, Observations , analysis and interpretation A full-scale in situ heating test for high-level nuclear waste disposal : observations , analysis and interpretation, April 2014, https://doi.org/10.1680/geot.2009.59.4.377, 2009.
  13. O. Karnland, U. Nilsson, H. Weber, P. Wersin, Sealing ability of Wyoming bentonite pellets foreseen as buffer material - laboratory results, Phys. Chem. Earth 33 (SUPPL. 1) (2008), https://doi.org/10.1016/j.pce.2008.10.024.
  14. L. Zheng, J. Rutqvist, J.T. Birkholzer, H.-H. Liu, On the impact of temperatures up to 200C in clay repositories with bentonite engineer barrier systems: a study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol. 197 (2015a) 278-295, https://doi.org/10.1016/j.enggeo.2015.08.026.
  15. D.G. Schulze, Clay minerals, Encycl.Soils.Environ. 4 (2005b) 246-254, https://doi.org/10.1016/B0-12-348530-4/00189-2.
  16. I. Aksu, E. Bazilevskaya, Z.T. Karpyn, Swelling of clay minerals in unconsolidated porous media and its impact on permeability, GeoResJ 7 (2015a) 1-13, https://doi.org/10.1016/j.grj.2015.02.003.
  17. I.C. Bourg, J.B. Ajo-Franklin, Clay, water, and salt: controls on the permeability of fine-grained sedimentary rocks, Acc. Chem. Res. 50 (9) (2017) 2067-2074, https://doi.org/10.1021/acs.accounts.7b00261.
  18. D.G. Schulze, in: D. B. T.-E. of S. in the E. Hillel (Ed.), CLAY MINERALS, 246-254, Elsevier, 2005a, https://doi.org/10.1016/B0-12-348530-4/00189-2.
  19. T. Chen, M. Sedighi, A.P. Jivkov, S.C. Seetharam, A model for hydraulic conductivity of compacted bentonite - inclusion of microstructure effects under confined wetting, Geotechnique 71 (12) (2021) 1071-1084, https://doi.org/10.1680/jgeot.19.P.088.
  20. T. Chen, M. Sedighi, A. Jivkov, S.C. Seetharam, Unsaturated hydraulic conductivity of compacted bentonite: revisit of microstructure effects, in: Environmental Science and Engineering, 2019, https://doi.org/10.1007/978-981-13-2224-2_67.
  21. A.C. Jacinto, M.V. Villar, A. Ledesma, Influence of water density on the water-retention curve of expansive clays, Geotechnique 62 (8) (2012) 657-667, https://doi.org/10.1680/geot.7.00127.
  22. C. Tournassat, M. Bizi, G. Braibant, C. Crouzet, Influence of montmorillonite tactoid size on Na-Ca cation exchange reactions, J. Colloid Interface Sci. 364 (2) (2011) 443-454, https://doi.org/10.1016/j.jcis.2011.07.039.
  23. C. Tournassat, A. Vinsot, E.C. Gaucher, S. Altmann, Chemical conditions in clay-rocks, Dev.Clay .Sci 6 (2015) 71-100, https://doi.org/10.1016/B978-0-08-100027-4.00003-6.
  24. I. Aksu, E. Bazilevskaya, Z.T. Karpyn, Swelling of clay minerals in unconsolidated porous media and its impact on permeability, GeoResJ 7 (2015b) 1-13, https://doi.org/10.1016/j.grj.2015.02.003.
  25. J.V. Walther, Earth's Natural Resources, Jones & Bartlett Learning, 2013.
  26. C.E. Weaver, L.D. Pollard, The Chemistry of Clay Minerals, Elsevier Science, 2011.
  27. V. Guimaraes, I. Bobos, Role of clay barrier systems in the disposal of radioactive waste, Sorbents.Mater.Control.Environ. Pollut (2021b) 513-541, https://doi.org/10.1016/b978-0-12-820042-1.00011-0.
  28. Y. Tachi, K. Yotsuji, Diffusion and sorption of Cs+, Na+, I- and HTO in compacted sodium montmorillonite as a function of porewater salinity: integrated sorption and diffusion model, Geochem. Cosmochim. Acta 132 (2014) 75-93, https://doi.org/10.1016/j.gca.2014.02.004.
  29. C. di Maio, G. Scaringi, Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface, Eng. Geol. 200 (2016) 1-9, https://doi.org/10.1016/j.enggeo.2015.11.007.
  30. H. Sun, D. Masin, J. Najser, G. Scaringi, Water retention of a bentonite for deep geological radioactive waste repositories: high-temperature experiments and thermodynamic modeling, Eng. Geol. 269 (2020), https://doi.org/10.1016/j.enggeo.2020.105549.
  31. H. Sun, G. Scaringi, D. Masin, J. Najser, An experimental investigation on the swelling behavior of compacted B75 bentonite, Eng. Geol. 296 (2022), https://doi.org/10.1016/j.enggeo.2021.106452.
  32. G. Sposito, The Environmental Chemistry of Aluminum, Taylor & Francis, 1995.
  33. M.J. Wilson, Rock-forming minerals: clay minerals, in: Sheet Silicates, Geological Society, 2013.
  34. V. Guimara, Role of Clay Barrier Systems in the Disposal of Radioactive Waste, 2021, pp. 513-541, https://doi.org/10.1016/B978-0-12-820042-1.00011-0.
  35. D.L. Sparks, Environmental Soil Chemistry, Elsevier Science, 2013.
  36. A. Dominijanni, M. Manassero, Modelling the swelling and osmotic properties of clay soils. Part I: the phenomenological approach, Int. J. Eng. Sci. 51 (2012a) 32-50, https://doi.org/10.1016/j.ijengsci.2011.11.003.
  37. A. Dominijanni, M. Manassero, Modelling the swelling and osmotic properties of clay soils. Part II: the physical approach, Int. J. Eng. Sci. 51 (2012b) 51-73, https://doi.org/10.1016/j.ijengsci.2011.11.001.
  38. E.S. Boek, P.V. Coveney, N.T. Skipper, Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor, J. Am. Chem. Soc. 117 (50) (1995) 12608-12617, https://doi.org/10.1021/ja00155a025.
  39. S. Karaborni, B. Smit, W. Heidug, J. Urai, E. van Oort, The swelling of clays: molecular simulations of the hydration of montmorillonite, Science 271 (5252) (1996) 1102-1104, https://doi.org/10.1126/science.271.5252.1102.
  40. K. Norrish, The swelling of montmorillonite, Discuss. Faraday Soc. 18 (1954b) 120-134, https://doi.org/10.1039/DF9541800120.
  41. K. Norrish, Crystalline swelling of montmorillonite: manner of swelling of montmorillonite, Nature 173 (4397) (1954a) 256-257, https://doi.org/10.1038/173256a0.
  42. R.W. Mooney, A.G. Keenan, L.A. Wood, Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction, J. Am. Chem. Soc. 74 (6) (1952) 1371-1374, https://doi.org/10.1021/ja01126a002.
  43. R.L. Anderson, I. Ratcliffe, H.C. Greenwell, P.A. Williams, S. Cliffe, P.v. Coveney, Clay swelling - a challenge in the oilfield, Earth Sci. Rev. 98 (3-4) (2010) 201-216, https://doi.org/10.1016/j.earscirev.2009.11.003.
  44. J.M. Cases, O. Lietard, J. Yvon, J.F. Delon, Etude des proprietes cristallochimiques, morphologiques, superficielles de kaolinites desordonnees, Bull. Mineral. 105 (5) (1982) 439-455, https://doi.org/10.3406/bulmi.1982.7566.
  45. J.M. Cases, I. Berend, G. Besson, M. Francois, J.P. Uriot, F. Thomas, J.E. Poirier, Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form, Langmuir 8 (11) (1992) 2730-2739, https://doi.org/10.1021/la00047a025.
  46. M. Chavez-Paez, L. DePablo, J.J. DePablo, Monte Carlo simulations of Ca-montmorillonite hydrates, J. Chem. Phys. 114 (24) (2001) 10948-10953, https://doi.org/10.1063/1.1374536.
  47. E.J.M. Hensen, B. Smit, Why clays swell, J. Phys. Chem. B 106 (49) (2002) 12664-12667, https://doi.org/10.1021/jp0264883.
  48. L. Massat, O. Cuisinier, I. Bihannic, F. Claret, M. Pelletier, F. Masrouri, S. Gaboreau, Swelling pressure development and inter-aggregate porosity evolution upon hydration of a compacted swelling clay, Appl. Clay Sci. 124 (125) (2016) 197-210, https://doi.org/10.1016/j.clay.2016.01.002.
  49. C. di Maio, Exposure of bentonite to salt solution: osmotic and mechanical effects, Geotechnique 46 (4) (1996) 695-707, https://doi.org/10.1680/geot.1996.46.4.695.
  50. C. di Maio, L. Santoli, P. Schiavone, Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state, Mech. Mater. 36 (5-6) (2004) 435-451, https://doi.org/10.1016/S0167-6636(03)00070-X.
  51. O. Karnland, A. Muurinen, F. Karlsson, Bentonite swelling pressure in NaCl solutions - experimentally determined data and model calculations, Advances in Understanding Engineered Clay Barriers - Proceedings of the International Symposium on Large Scale Field Tests in Granite (2005) 241-256.
  52. O. Karnland, M. Birgersson, M. Hedstrom, Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite, Phys. Chem. Earth 36 (17-18) (2011) 1554-1558, https://doi.org/10.1016/j.pce.2011.07.023.
  53. F.T. Madsen, M. Muller-Vonmoos, The swelling behaviour of clays, Appl. Clay Sci. 4 (2) (1989a) 143-156, https://doi.org/10.1016/0169-1317(89)90005-7.
  54. A. Meleshyn, C. Bunnenberg, The gap between crystalline and osmotic swelling of Na-montmorillonite: a Monte Carlo study, J. Chem. Phys. 122 (3) (2005), https://doi.org/10.1063/1.1834499.
  55. L.J. Michot, I. Bihannic, M. Pelletier, E. Rinnert, J.-L. Robert, Hydration and swelling of synthetic Na-saponites: influence of layer charge, Am. Mineral. 90 (1) (2005) 166-172, https://doi.org/10.2138/am.2005.1600.
  56. K. Norrish, The swelling of montmorillonite, Discuss. Faraday Soc. 18 (1954c) 120-134, https://doi.org/10.1039/DF9541800120.
  57. M. Holmboe, S. Wold, M. Jonsson, Porosity investigation of compacted bentonite using XRD profile modeling, J. Contam. Hydrol. 128 (1-4) (2012) 19-32, https://doi.org/10.1016/j.jconhyd.2011.10.005.
  58. W. Wang, J. Rutqvist, U.-J. Gorke, J.T. Birkholzer, O. Kolditz, Non-isothermal flow in low permeable porous media: a comparison of Richards' and two-phase flow approaches, Environ. Earth Sci. 62 (6) (2011) 1197-1207, https://doi.org/10.1007/s12665-010-0608-1.
  59. F.T. Madsen, M. Muller-Vonmoos, The swelling behaviour of clays, Appl. Clay Sci. 4 (2) (1989b) 143-156, https://doi.org/10.1016/0169-1317(89)90005-7.
  60. M. Segad, B. Jonsson, T. Akesson, B. Cabane, Ca/Na montmorillonite: structure, forces and swelling properties, Langmuir 26 (8) (2010) 5782-5790, https://doi.org/10.1021/la9036293.
  61. G. Berger, J.C. Lacharpagne, B. Velde, D. Beaufort, B. Lanson, Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences, Appl. Geochem. 12 (1) (1997) 23-35, https://doi.org/10.1016/S0883-2927(96)00051-0.
  62. J. Srodon, D. Morgan, E.V. Eslinger, D.D. Eberl, M.R. Karlinger, Chemistry of Illite/Smectite a N D End-Member Illite, vol. 34, 1986, pp. 368-378, 4. https://doi.org/10.1346/CCMN.1986.0340403
  63. J. Lee, S.-M. Park, E.-K. Jeon, K. Baek, Selective and irreversible adsorption mechanism of cesium on illite, Appl. Geochem. 85 (2017) 188-193, https://doi.org/10.1016/j.apgeochem.2017.05.019.
  64. J. Hower, E.V. Eslinger, M.E. Hower, E.A. Perry, Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence, Bull. Geol. Soc. Am. 87 (5) (1976a) 725-737, https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.
  65. D. Eberl, J. Hower, Kinetics of illite formation, Bull. Geol. Soc. Am. 87 (9) (1976a) 1326-1330, https://doi.org/10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2.
  66. S.P. Altaner, R.F. Ylagan, Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization, Clay Clay Miner. 45 (4) (1997a) 517-533, https://doi.org/10.1346/CCMN.1997.0450404.
  67. A. Bauer, B. Velde, Smectite transformation in high molar KOH solutions, Clay Miner. 34 (2) (1999) 259-273, https://doi.org/10.1180/000985599546226.
  68. B. Velde, G. Vasseur, Estimation of the diagenetic smectite to illite transformation in time-temperature space, Am. Mineral. 77 (9-10) (1992) 967-976.
  69. P.H. Nadeau, R.C. Reynolds Jr., Burial and contact metamorphism in the mancos shale, Clay Clay Miner. 29 (4) (1981) 249-259, https://doi.org/10.1346/CCMN.1981.0290402.
  70. G. Whitney, Role of water in the smectite-to-illite reaction, Clay Clay Miner. 38 (4) (1990) 343-350, https://doi.org/10.1346/CCMN.1990.0380402.
  71. G. Whitney, Dioctahedral smectite reactions at elevated temperatures: effects of K-availability, Na/K ratio and ionic strength, Appl. Clay Sci. 7 (1-3) (1992) 97-112, https://doi.org/10.1016/0169-1317(92)90032-I.
  72. J.F. Burst, Diagenesis of gulf coast clayey sediments and its possible relation to petroleum migration, AAPG (Am. Assoc. Pet. Geol.) Bull. 53 (1) (1969) 73-93. https://doi.org/10.1306/5D25C595-16C1-11D7-8645000102C1865D
  73. E. Ferrage, O. Vidal, R. Mosser-Ruck, M. Cathelineau, J. Cuadros, A reinvestigation of smectite illitization in experimental hydrothermal conditions: results from X-ray diffraction and transmission electron microscopy, Am. Mineral. 96 (1) (2011) 207-223, https://doi.org/10.2138/am.2011.3587.
  74. J. Srodon, Mixed-layer illite-smectite in low-temperature diagenesis: data from the Miocene of the Carpathian Foredeep, Clay Miner. 19 (2) (1984) 205-215, https://doi.org/10.1180/claymin.1984.019.2.07.
  75. A.M. Pytte, R.C. Reynolds, Of Smectite to Illite, 1989, p. 1953.
  76. W.-L. Huang, J.M. Longo, D.R. Pevear, An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer, Clay Clay Miner. 41 (2) (1993) 162-177, https://doi.org/10.1346/CCMN.1993.0410205.
  77. C.M. Bethke, S.P. Altaner, Layer-by-layer mechanism of smectite illitization and application to a new rate law, Clay Clay Miner. 34 (2) (1986) 136-145, https://doi.org/10.1346/CCMN.1986.0340204.
  78. D.D. Eberl, J. Srodon, M. Kralik, B.E. Taylor, Z.E. Peterman, Ostwald ripening of clays and metamorphic minerals, Science 248 (4954) (1990) 474-477, https://doi.org/10.1126/science.248.4954.474.
  79. R.C. Reynolds Jr., X-ray diffraction studies of illite/smectite from rocks, < 1 mm randomly oriented powders, and < 1 mm oriented powder aggregates: the absence of laboratory-induced artifacts, Clay Clay Miner. 40 (4) (1992) 387-396, https://doi.org/10.1346/CCMN.1992.0400403.
  80. P.H. Nadeau, M.J. Wilson, W.J. McHardy, J.M. Tait, Interparticle diffraction: a new concept for interstratified clays, Clay Miner. 19 (5) (1984a) 757-769, https://doi.org/10.1180/claymin.1984.019.5.06.
  81. P.H. Nadeau, D.C. Bain, Composition of some smectites and diagenetic illitic clays and implications for their origin, Clay Clay Miner. 34 (4) (1986) 455-464, https://doi.org/10.1346/CCMN.1986.0340412.
  82. W. Hoang, J.M. Longo, D.R. Pevear, SMECTITE-TO-ILLITE CONVERSION A N D ITS USE AS A GEOTHERMOMETER, vol. 41, 1993, pp. 162-177, 2. https://doi.org/10.1346/CCMN.1993.0410205
  83. J. Cuadros, S.P. Altaner, Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: constraints on the smectite-to-illite transformation mechanism, Am. Mineral. 83 (7-8) (1998a) 762-774, https://doi.org/10.2138/am-1998-7-808.
  84. D. Eberl, The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations, Geochem. Cosmochim. Acta 42 (1) (1978a) 1-7, https://doi.org/10.1016/0016-7037(78)90210-7.
  85. D.D. Eberl, Three zones for illite formation during burial diagenesis and metamorphism, Clay Clay Miner. 41 (1) (1993) 26-37, https://doi.org/10.1346/CCMN.1993.0410103.
  86. A.E. Foscolos, H. Kodama, Diagenesis of clay minerals from lower cretaceous shales of North eastern British Columbia, Clay Clay Miner. 22 (4) (1974) 319-335, https://doi.org/10.1346/CCMN.1974.0220403.
  87. N. Clauer, M. Honty, A.E. Fallick, V. Sucha, A. Aubert, Regional illitization in bentonite beds from the East Slovak Basin based on isotopic characteristics (K-Ar, δ 18 O and δD) of illite-type nanoparticles, Clay Miner. 49 (2) (2014) 247-275, https://doi.org/10.1180/claymin.2014.049.2.07.
  88. D. Eberl, J. Hower, Kinetics of illite formation, Bull. Geol. Soc. Am. 87 (9) (1976b) 1326-1330, https://doi.org/10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2.
  89. B. Lanson, D. Champion, The I/S-to-illite reaction in the late stage diagenesis, Am. J. Sci. 291 (5) (1991) 473-506, https://doi.org/10.2475/ajs.291.5.473.
  90. J. Srodon, D.D. Eberl, Illite, Micas, 1984.
  91. P.H. Nadeau, M.J. Wilson, W.J. McHardy, J.M. Tait, The conversion of smectite to illite during diagenesis: evidence from some illite clays from bentonites and sandstones, Mineral. Mag. 49 (3) (1985) 393-400, https://doi.org/10.1180/minmag.1985.049.352.10.
  92. A. Meunier, B. Velde, L. Griffault, The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage, Clay Miner. 33 (2-3) (1998) 187-196, https://doi.org/10.1180/000985598545462.
  93. A. Meunier, B. Velde, Solid solutions in I/S mixed-layer minerals and illite, Am. Mineral. 74 (9-10) (1989) 1106-1112.
  94. B. Velde, A.M. Brusewitz, Composition variation in component layers in natural illite/smectite, Clay Clay Miner. 34 (6) (1986) 651-657. https://doi.org/10.1346/CCMN.1986.0340605
  95. D. Eberl, The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations, Geochem. Cosmochim. Acta 42 (1) (1978b) 1-7, https://doi.org/10.1016/0016-7037(78)90210-7.
  96. N. Guven, W.-L. Huang, Effects of octahedral Mg2+ AND Fe3+ substitutions on hydrothermal illitization reactions, Clay Clay Miner. 39 (4) (1991) 387-399, https://doi.org/10.1346/CCMN.1991.0390408.
  97. H.E. Roberson, R.W. Lahann, Smectite to illite conversion rates: effects of solution chemistry, Clay Clay Miner. 29 (2) (1981b) 129-135. https://doi.org/10.1346/CCMN.1981.0290207
  98. J.J. Howard, D.M. Roy, Development of layer charge and kinetics of experimental smectite alteration, Clay Clay Miner. 33 (2) (1985a) 81-88, https://doi.org/10.1346/CCMN.1985.0330201.
  99. W.C. Elliott, J.L. Aronson, G. Matisoff, D.L. Gautier, Kinetics of the smectite to illite transformation in the Denver Basin: clay mineral, K-Ar data, and mathematical model results, AAPG (Am. Assoc. Pet. Geol.) Bull. 75 (3) (1991) 436-462. https://doi.org/10.1306/0C9B2803-1710-11D7-8645000102C1865D
  100. W.C. Elliott, G. Matisoff, Evaluation of kinetic models for the smectite to illite transformation, Clay Clay Miner. 44 (1) (1996) 77-87, https://doi.org/10.1346/CCMN.1996.0440107.
  101. H.E. Roberson, R.W. Lahann, Clay minerals) Smectite to illite conversion rates: effects of solution chemistry, Clay Clay Miner. 29 (2) (1981a) 129-135. https://doi.org/10.1346/CCMN.1981.0290207
  102. A. Inoue, N. Kohyama, R. Kitagawa, T. Watanabe, Chemical and morphological evidence for the conversion of smectite to illite, Clay Clay Miner. 35 (2) (1987) 111-120, https://doi.org/10.1346/CCMN.1987.0350203.
  103. D. Eberl, The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations, Geochem. Cosmochim. Acta 42 (1) (1978c) 1-7, https://doi.org/10.1016/0016-7037(78)90210-7.
  104. J.J. Howard, D.M. Roy, Development of layer charge and kinetics of experimental smectite alteration, Clay Clay Miner. 33 (2) (1985b) 81-88, https://doi.org/10.1346/CCMN.1985.0330201.
  105. W.L. Huang, A.M. Bishop, R.W. Brown, The effect of fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions, Clay Miner. 21 (4) (1986) 585-601, https://doi.org/10.1180/claymin.1986.021.4.10.
  106. A. Inoue, Potassium fixation by clay minerals during hydrothermal treatment, Clay Clay Miner. 31 (2) (1983) 81-91, https://doi.org/10.1346/CCMN.1983.0310201.
  107. C.E. Turner, N.S. Fishman, Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau, Geol. Soc. Am. Bull. 103 (4) (1991) 538-558, https://doi.org/10.1130/0016-7606(1991)103<0538:JLTODA>2.3.CO;2.
  108. J. Kim, H. Dong, J. Seabaugh, S.W. Newell, D.D. Eberl, Role of microbes in the smectite-to-illite reaction, Science 303 (5659) (2004) 830-832, https://doi.org/10.1126/science.1093245.
  109. J. Kim, H. Dong, K. Yang, H. Park, W.C. Elliott, A. Spivack, T. Koo, G. Kim, Y. Morono, S. Henkel, T. Hoshino, V.B. Heuer, Naturally occurring, microbially induced smectite-to-illite reaction, Geology 47 (6) (2019) 535-539, https://doi.org/10.1130/G46122.1.
  110. L. Zheng, J. Rutqvist, J.T. Birkholzer, H.-H. Liu, On the impact of temperatures up to 200C in clay repositories with bentonite engineer barrier systems: a study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol. 197 (2015b) 278-295, https://doi.org/10.1016/j.enggeo.2015.08.026.
  111. D.D. Eberl, J. Srodon, Ostwald ripening and interparticle-diffraction effects for illite crystals, Am. Mineral. 73 (11-12) (1988) 1335-1345.
  112. S.P. Altaner, R.F. Ylagan, Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization, Clay Clay Miner. 45 (4) (1997b) 517-533, https://doi.org/10.1346/CCMN.1997.0450404.
  113. S.P. Altaner, C.A. Weiss Jr., R.J. Kirkpatrick, Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals, Nature 331 (6158) (1988) 699-702, https://doi.org/10.1038/331699a0.
  114. T.E. Bell, Microstructure in mixed-layer illite/smectite and its relationship to the reaction of smectite to illite, Clay Clay Miner. 34 (2) (1986) 146-154, https://doi.org/10.1346/CCMN.1986.0340205.
  115. J. Cuadros, S.P. Altaner, Compositional and structural features of the octahedral sheet in mixed-layer illite/smectite from bentonites, Eur. J. Mineral 10 (1) (1998c) 111-124, https://doi.org/10.1127/ejm/10/1/0111.
  116. J. Hower, E.V. Eslinger, M.E. Hower, E.A. Perry, Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence, Bull. Geol. Soc. Am. 87 (5) (1976b) 725-737, https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.
  117. H. Lindgreen, P.L. Hansen, Ordering of illite-smectite in upper jurassic clay-stones from the North Sea, Clay Miner. 26 (1) (1991) 105-125, https://doi.org/10.1180/claymin.1991.026.1.10.
  118. M.D. Buatier, D.R. Peacor, J.R. O'Neil, Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature, Clay Clay Miner. 40 (1) (1992) 65-80, https://doi.org/10.1346/CCMN.1992.0400108.
  119. B. Lanson, B.A. Sakharov, F. Claret, V.A. Drits, Diagenetic smectite-to-illite transition in clay-rich sediments: a reappraisal of x-ray diffraction results using the multi-specimen method, Am. J. Sci. 309 (6) (2009) 476-516, https://doi.org/10.2475/06.2009.03.
  120. D.K. McCarty, B.A. Sakharov, V.A. Drits, New insights into smectite illitization: a zoned K-bentonite revisited, Am. Mineral. 94 (11-12) (2009) 1653-1671, https://doi.org/10.2138/am.2009.3260.
  121. R. Mosser-Ruck, M. Cathelineau, A. Baronnet, A. Trouillert, Hydrothermal reactivity of K-smectite at 300℃ and 100 bar: dissolution-crystallization process and non-expandable dehydrated smectite formation, Clay Miner. 34 (2) (1999) 275-290, https://doi.org/10.1180/000985599546235.
  122. R. Mosser-Ruck, M. Cathelineau, Experimental transformation of Na,Ca-smectite under basic conditions at 150℃, Appl. Clay Sci. 26 (1-4 SPEC) (2004) 259-273, https://doi.org/10.1016/j.clay.2003.12.011.
  123. R. Pusch, F.T. Madsen, Aspects on the illitization of the Kinnekulle bentonites, Clay Clay Miner. 43 (3) (1995) 261-270, https://doi.org/10.1346/CCMN.1995.0430301.
  124. G. Whitney, B. Velde, Changes in particle morphology during illitization: an experimental study, Clay Clay Miner. 41 (2) (1993) 209-218, https://doi.org/10.1346/CCMN.1993.0410209.
  125. A. Inoue, B. Velde, A. Meunier, G. Touchard, Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system, Am. Mineral. 73 (11-12) (1988) 1325-1334.
  126. S.P. Altaner, J. Hower, G. Whitney, J.L. Aronson, Model for K-bentonite formation: evidence from zoned K-bentonites in the disturbed belt, Montana, Geology 12 (7) (1984) 412-415, https://doi.org/10.1130/0091-7613(1984)12<412:MFKFEF>2.0.CO;2.
  127. A. Inoue, T. Watanabe, N. Kohyama, A.M. Brusewitz, Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden, Clay Clay Miner. 38 (3) (1990) 241-249, https://doi.org/10.1346/CCMN.1990.0380302.
  128. H. Lindgreen, H. Jacobsen, H.J. Jakobsen, Diagenetic structural transformations in North Sea jurassic illite/smectite, Clay Clay Miner. 39 (1) (1991) 54-69, https://doi.org/10.1346/CCMN.1991.0390108.
  129. J. Cuadros, S.P. Altaner, Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: constraints on the smectite-to-illite transformation mechanism, Am. Mineral. 83 (7-8) (1998b) 762-774, https://doi.org/10.2138/am-1998-7-808.
  130. J.H. Ahn, D.R. Peacor, Transmission and analytical electron microscopy of the smectite- to-illite transition, Clay Clay Miner. 34 (2) (1986) 165-179. https://doi.org/10.1346/CCMN.1986.0340207
  131. P.H. Nadeau, M.J. Wilson, W.J. McHardy, J.M. Tait, Interstratified clays as fundamental particles, Science 225 (4665) (1984b) 923-925, https://doi.org/10.1126/science.225.4665.923.
  132. J.W. Morse, W.H. Casey, Ostwald processes and mineral paragenesis in sediments, Am. J. Sci. 288 (6) (1988) 537-560, https://doi.org/10.2475/ajs.288.6.537.
  133. A. Inoue, R. Kitagawa, Morphological characteristics of illitic clay minerals from a hydrothermal system, Am. Mineral. 79 (7-8) (1994) 700-711.
  134. R. Kitagawa, A. Inoue, N. Kohyama, Surface microtopography of interstratified mica and smectite from the Goto pyrophyllite deposit, Japan, Clay Miner. 29 (5) (1994) 709-715.
  135. Y.-C. Yau, D.R. Peacor, S.D. McDowell, Smectite-to- illite reactions in Salton Sea shales: a transmission and analytical electron microscopy study, J. Sediment. Petrol. 57 (2) (1987) 335-342.
  136. M. Amouric, J. Olives, Illitization of smectite as seen by high-resolution transmission electron microscopy, Eur. J. Mineral 3 (5) (1991) 831-835, https://doi.org/10.1127/ejm/3/5/0831.
  137. C.C. Harvey, P.R.L. Browne, Mixed-layer clay geothermometry in the Wair-akei geothermal field, New Zealand, Clay Clay Miner. 39 (6) (1991) 614-621, https://doi.org/10.1346/CCMN.1991.0390607.
  138. T. Murakami, T. Sato, T. Watanabe, Microstructure of interstratified illite/smectite at 123 K: a new method for HRTEM examination, Am. Mineral. 78 (3-4) (1993) 465-468.
  139. J. Cuadros, J. Linares, Experimental kinetic study of the smectite-to-illite transformation, Geochem. Cosmochim. Acta 60 (3) (1996) 439-453, https://doi.org/10.1016/0016-7037(95)00407-6.
  140. D. Eberl, J. Hower, The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay, Clay Clay Miner. 25 (3) (1977) 215-227, https://doi.org/10.1346/CCMN.1977.0250308.
  141. R. Mosser-Ruck, J. Pironon, M. Cathelineau, A. Trouiller, Experimental illitization of smectite in a K-rich solution, Eur. J. Mineral 13 (5) (2001) 829-840, https://doi.org/10.1127/0935-1221/2001/0013/0829.
  142. T. Dudek, J. Srodon, Identification of illite/smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness, Geologica Carpathica - Clays 1 (1-2) (1996) 21-32.
  143. J. Srodon, D.D. Eberl, V.A. Drits, Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism, Clay Clay Miner. 48 (4) (2000) 446-458, https://doi.org/10.1346/CCMN.2000.0480405.
  144. K.B. Krauskopf, Geology of high-level nuclear waste disposal, in: Annual Review of Earth and Planetary Sciences, vol. 16, 1988, https://doi.org/10.1146/annurev.earth.16.1.173.
  145. V. Gutierrez-Rodrigo, P.L. Martin, M.V. Villar, Effect of interfaces on gas breaktrough pressure in compacted bentonite used as engineered barrier for radioactive waste disposal, Process Saf. Environ. Protect. 149 (2021) 244-257, https://doi.org/10.1016/j.psep.2020.10.053.
  146. D. Feron, D. Crusset, J.M. Gras, Corrosion issues in nuclear waste disposal, J. Nucl. Mater. 379 (1-3) (2008) 16-23, https://doi.org/10.1016/j.jnucmat.2008.06.023.
  147. S. Norris, Clays in natural and engineered barriers for radioactive waste confinement: an introduction, in: Geological Society Special Publication, vol. 400, 2014, https://doi.org/10.1144/SP400.43. Issue 1.
  148. B. Grambow, Geological disposal of radioactive waste in Clay, Elements 12 (4) (2016) 239-245, https://doi.org/10.2113/gselements.12.4.239.
  149. F.D. Hansen, E.L. Hardin, R.P. Rechard, G. a Freeze, C. David, P. v Brady, C.M. Stone, M.J. Martinez, J.F. Holland, T. Dewers, K.N. Gaither, S.R. Sobolik, R.T. Cygan, Shale Disposal of U . S . High-Level Radioactive Waste, May, 2010, p. 148.
  150. L. Zheng, J. Rutqvist, H.-H. Liu, J.T. Birkholzer, E. Sonnenthal, Model evaluation of geochemically induced swelling/shrinkage in argillaceous formations for nuclear waste disposal, Appl. Clay Sci. 97 (98) (2014) 24-32, https://doi.org/10.1016/j.clay.2014.05.019.
  151. P. Bossart, F. Bernier, J. Birkholzer, C. Bruggeman, P. Connolly, S. Dewonck, M. Fukaya, M. Herfort, M. Jensen, J.-M. Matray, T. Vietor, K. Wieczorek, Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments, Swiss J. Geosci. 110 (1) (2017) 3-22, https://doi.org/10.1007/s00015-016-0236-1.
  152. L. Zheng, H. Xu, J. Rutqvuist, J.T. Birkholzer, Coupled THMC models for bentonite barrier in nuclear waste repositories: modeling approach, validation by field test and exploratory models, in: 55th U.S. Rock Mechanics/Geomechanics Symposium 3, 2021, pp. 127-135, 2021.
  153. F.P. Glasser, Cements in Radioactive Waste Disposal, 2013. http://www-pub.iaea.org/MTCD/Publications/PDF/TE-1701_add-CD/PDF/UKAberdeenUniversity.pdf.
  154. A. Gens, M. Sanchez, L.D.N. Guimaraes, E.E. Alonso, A. Lloret, S. Olivella, M.V. Villar, F. Huertas, A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation, Geotechnique 59 (4) (2009) 377-399, https://doi.org/10.1680/geot.2009.59.4.377.
  155. A. Shehata, M. Fall, C. Detellier, M. Alzamel, Effect of groundwater chemistry and temperature on swelling and microstructural properties of sandebentonite for barriers of radioactive waste repositories, Bull. Eng. Geol. Environ. 80 (2) (2021) 1857-1873, https://doi.org/10.1007/s10064-020-02020-5.
  156. J. Rutqvist, Thermal management associated with geologic disposal of large spent nuclear fuel canisters in tunnels with thermally engineered backfill, Tunn. Undergr. Space Technol. 102 (2020), https://doi.org/10.1016/j.tust.2020.103454.
  157. L. Zheng, J. Rutqvist, H. Xu, J.T. Birkholzer, Coupled THMC models for bentonite in an argillite repository for nuclear waste: illitization and its effect on swelling stress under high temperature, Eng. Geol. 230 (2017) 118-129, https://doi.org/10.1016/j.enggeo.2017.10.002.
  158. Y.-G. Chen, X.-M. Liu, X. Mu, W.-M. Ye, Y.-J. Cui, B. Chen, D.-B. Wu, Thermal conductivity of compacted GO-GMZ bentonite used as buffer material for a high-level radioactive waste repository, Adv. Civ. Eng. (2018), https://doi.org/10.1155/2018/9530813, 2018.
  159. L. Laloui, A. Ferrari, J.A. Bosch, Bentonite Clay Barriers in Nuclear Waste Repositories, vol. 205, E3S Web of Conferences, 2020a, https://doi.org/10.1051/e3sconf/202020501003.
  160. A. Shehata, M. Fall, Effect of Groundwater Chemistry and Temperature on Swelling and Microstructural Properties of Sand - Bentonite for Barriers of Radioactive Waste Repositories, 2021, pp. 1857-1873.
  161. M.V. Villar, R.J. Iglesias, C. Gutierrez- Alvarez, B. Carbonell, Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions, Appl. Clay Sci. 160 (2018b) 49-57, https://doi.org/10.1016/j.clay.2017.12.045.
  162. S. Camp, O. Pie, J.P. Gourc, Proposed protocol for characterizing a clay layer subjected to bending, Geotech. Test J. 32 (3) (2009) 273-279. https://doi.org/10.1520/GTJ101438
  163. J.P. Gourc, S. Camp, B.V.S. Viswanadham, S. Rajesh, Deformation behavior of clay cap barriers of hazardous waste containment systems: full-scale and centrifuge tests, Geotext. Geomembranes 28 (3) (2010) 281-291, https://doi.org/10.1016/j.geotexmem.2009.09.014.
  164. L. Borgesson, M. Chijimatsu, T. Fujita, T.S. Nguyen, J. Rutqvist, L. Jing, Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses, Int. J. Rock Mech. Min. Sci. 38 (1) (2001) 95-104, https://doi.org/10.1016/S1365-1609(00)00067-8.
  165. G. de la Morena, L. Asensio, V. Navarro, Intra-aggregate water content and void ratio model for MX-80 bentonites, Eng. Geol. 246 (2018) 131-138, https://doi.org/10.1016/j.enggeo.2018.09.028.
  166. G. Guo, M. Fall, Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts, Eng. Geol. 243 (2018) 253-271, https://doi.org/10.1016/j.enggeo.2018.07.002.
  167. G. Guo, M. Fall, Modelling of preferential gas flow in heterogeneous and saturated bentonite based on phase field method, Comput. Geotech. 116 (2019), https://doi.org/10.1016/j.compgeo.2019.103206.
  168. H.R. Thomas, H.T. Yang, Y. He, P.J. Cleall, A multi-level parallelized substructing-frontal solution for coupled thermo/hydro/mechanical problems in unsaturated soil, Int. J. Numer. Anal. Methods GeoMech. 27 (11) (2003) 951-965, https://doi.org/10.1002/nag.306.
  169. H.-J. Herbert, J. Kasbohm, H. Sprenger, A.M. Fernandez, C. Reichelt, Swelling pressures of MX-80 bentonite in solutions of different ionic strength, Phys. Chem. Earth 33 (SUPPL. 1) (2008), https://doi.org/10.1016/j.pce.2008.10.005.
  170. M.V. Villar, A. Lloret, Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite, Appl. Clay Sci. 26 (1-4 SPEC) (2004) 337-350, https://doi.org/10.1016/j.clay.2003.12.026.
  171. A. Jenni, U. Mader, Coupling of chemical and hydromechanical properties in bentonite, Appl. Geochem. 97 (August) (2018) 147-156, https://doi.org/10.1016/j.apgeochem.2018.08.013.
  172. W.-S. Lin, C.-W. Liu, L. Suu-Yan, Modeling of coupled thermo-hydro-mechanical-chemical processes for high-level radioactive waste repositoriese17361, in: WM2017 Conference, 2017.
  173. P. Wersin, L.H. Johnson, I.G. McKinley, Performance of the bentonite barrier at temperatures beyond 100℃: a critical review, Phys. Chem. Earth 32 (8-14) (2007) 780-788, https://doi.org/10.1016/j.pce.2006.02.051.
  174. L. Laloui, A. Ferrari, J.A. Bosch, Bentonite clay barriers in nuclear waste repositories, in: E3S Web of Conferences 205, 2020, 01003, https://doi.org/10.1051/e3sconf/202020501003.
  175. E. Castellanos, M.V. Villar, E. Romero, A. Lloret, A. Gens, Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite, Phys. Chem. Earth 33 (SUPPL. 1) (2008), https://doi.org/10.1016/j.pce.2008.10.056.
  176. V. Navarro, G. de la Morena, A. Yustres, J. Gonz alez-Arteaga, L. Asensio, Predicting the swelling pressure of MX-80 bentonite, Appl. Clay Sci. 149 (2017) 51-58, https://doi.org/10.1016/j.clay.2017.08.014.
  177. G. Sarkar, S. Siddiqua, Preliminary studies of hydraulic and mechanical behavior of nanoparticle-based light backfill exposed to pore fluid salinity, J. Hazard.Toxic.Radioact. Waste 21 (2) (2017), https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000329.
  178. W.M. Ye, Y. He, Y.G. Chen, B. Chen, Y.J. Cui, Thermochemical effects on the smectite alteration of GMZ bentonite for deep geological repository, Environ. Earth Sci. 75 (10) (2016), https://doi.org/10.1007/s12665-016-5716-0.
  179. R. Pusch, J. Kasbohm, H.T.M. Thao, Chemical stability of montmorillonite buffer clay under repository-like conditions-A synthesis of relevant experimental data, Appl. Clay Sci. 47 (1-2) (2010) 113-119, https://doi.org/10.1016/j.clay.2009.01.002.
  180. S.M. Hsiung, A.H. Chowdhury, M.S. Nataraja, Thermal-Mechanical Modeling of a Large-Scale Heater Test, vol. 2, Elsevier Geo-Engineering Book Series, 2004, https://doi.org/10.1016/S1571-9960(04)80036-3. Issue C).
  181. P. Bossart, D. Jaeggi, C. Nussbaum, Experiments on thermo-hydro-mechanical behaviour of Opalinus clay at mont terri rock laboratory, Switzerland, J. Rock Mech. Geotech. Eng. 9 (3) (2017) 502-510, https://doi.org/10.1016/j.jrmge.2016.11.014.
  182. A. Gens, J. Alcoverro, R. Blaheta, M. Hasal, Z. Michalec, Y. Takayama, C. Lee, J. Lee, G.Y. Kim, C.W. Kuo, W.J. Kuo, C.Y. Lin, HM and THM interactions in bentonite engineered barriers for nuclear waste disposal, Int. J. Rock Mech. Min. Sci. 137 (2021), https://doi.org/10.1016/j.ijrmms.2020.104572.
  183. L. Zheng, J. Samper, L. Montenegro, A.M. Fernandez, A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite, J. Hydrol. 386 (1-4) (2010) 80-94, https://doi.org/10.1016/j.jhydrol.2010.03.009.
  184. P.L. Martin, J.M. Barcala, Large scale buffer material test: mock-up experiment at CIEMAT, Eng. Geol. 81 (3) (2005) 298-316, https://doi.org/10.1016/j.enggeo.2005.06.013.
  185. J. Samper, A. Mon, L. Montenegro, A coupled THMC model of the geochemical interactions of concrete and bentonite after 13 years of FEBEX plug operation, Appl. Geochem. 121 (2020), https://doi.org/10.1016/j.apgeochem.2020.104687.
  186. M. Sanchez, A. Gens, S. Olivella, THM analysis of a large-scale heating test incorporating material fabric changes, Int. J. Numer. Anal. Methods Geo-Mech. 36 (4) (2012) 391-421, https://doi.org/10.1002/nag.1011.
  187. M.V. Villar, Infiltration tests on a granite/bentonite mixture: influence of water salinity, Appl. Clay Sci. 31 (1-2) (2006) 96-109, https://doi.org/10.1016/j.clay.2005.07.007.
  188. M.V. Villar, J.L. Garcia-Sineriz, I. Barcena, A. Lloret, State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository, Eng. Geol. 80 (3-4) (2005) 175-198, https://doi.org/10.1016/j.enggeo.2005.05.001.
  189. X. Wang, H. Shao, J. Hesser, O. Kolditz, Analysis of the THM behaviour in a clay-based engineered barrier system (EBS): modelling of the HE-E experiment (Mont Terri URL), Environ. Earth Sci. 75 (20) (2016) 1-21, https://doi.org/10.1007/s12665-016-6116-1.
  190. S. Sato, S. Yamamoto, S. Torisu, M. Fukaya, Y. Tawara, K. Tanaka, K. Florian, Numerically reproduced HE-E experiment of mont terri project by thermos-hydro-mechanical coupled model, in: E3S Web of Conferences, 2020, 195, https://doi.org/10.1051/e3sconf/202019504015.