• Title/Summary/Keyword: radioactive chemical wastes

Search Result 64, Processing Time 0.023 seconds

Determination of major and minor elements in low and medium level radioactive wastes using closed-vessel microwave acid digestion (밀폐형 극초단파 산분해법을 이용한 중${\cdot}$저준위 방사성폐기물의 성분 원소 분석)

  • Lee Jeong-Jin;Pyo Hyung-Yeal;Jeon Jong-Seon;Lee Chang-Heon;Jee Kwang-Yong;Ji Pyung-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • The conditions are obtained for the decomposition of solid radioactive wastes, including ion exchange resin, zeolite, charcoal, and sludge from nuclear power plant. In the process of decomposing the radioactive wastes was used the microwave acid digestion method with mixed acid. The solution after acid digestion by the following method was colorless and transparent. Each solution was analyzed with ICP-AES and AAS and the recovery yield for 5 different elements added into the simulated radioactive wastes were over $94{\%}$. The elemental analysis of destructive low and medium level radioactive wastes by the proposed microwave acid digestion conditions concerning the chemical characteristics of each radioactive waste are expected to be useful basic data for development of optimal glass formulation.

  • PDF

Decomposition of Fe-EDTA in Nuclear Waste Water by using Underwater discharge Plasma

  • Kim, Jin-Kil;Lee, Han-Yong;Kang, Duk-Won;Uhm, Han-Sup
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.336-336
    • /
    • 2004
  • EDTA contained in decontamination wastes can cause complexation of radioactive captions resulting from its various treatment process such as chemical precipitation, and ion exchange etc. It might also import for elevated teachability and higher mobility of cationic contaminants from conditioned wastes such as waste immobilized in cement or other matrices. Therefore, various cheated or unchlelated EDTAS must be treated to environmentally safe materials.(omitted)

  • PDF

Dissolution Conditions of Solid Radioactive Wastes Generated from NPP for the Analysis of Radionuclides Using a Closed-vessel Microwave Acid Digestion System (원전 발생 고체 방사성폐기물 내 핵종 분석을 위한 극초단파 산분해 장치를 이용한 용액화 조건)

  • 표형열;이정진;전종선;이창헌;지광용
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.158-166
    • /
    • 2004
  • The optimal conditions are obtained for the decomposition of solid radioactive wastes, including ion exchange resin, zeolite, active charcoal, and sludge from nuclear power plant. In the process of decomposing the radioactive wastes were used the microwave acid digestion method with mixed acid. The solution after acid digestion by the following method was colorless and transparent. Each solution was analyzed with ICP-AES and AAS and the recovery yield for 5 different elements added the simulated radioactive wastes were over 94%. As an effective pre-treatment, the proposed microwave acid digestion conditions concerning the chemical trait of each radioactive waste are expected to be generally applied to above-mentioned radioactive wastes from nuclear power plant hereafter.

  • PDF

Chinese buffer material for high-level radiawaste disposal --Basic features of GMZ-l

  • WEN Zhijian
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.236-244
    • /
    • 2005
  • Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposal high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. The buffer material is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation property, thermal conductivity, chemical buffering property, overpack supporting property, stress buffering property over a long period of time. Benotite is selected as the main content of buffer material that can satisfy above. GMZ deposit is selected as the candidate supplier for Chinese buffer material of High Level Radioactive waste repository. This paper presents geological features of GMZ deposit and basic property of GMZ Na bentonite. GMZ bentonite deposit is a super large scale deposits with high content of Montmorillonite (about $75\%$) and GMZ-l, which is Na-bentonite produced from GMZ deposit is selected as reference material for Chinese buffer material study.

  • PDF

Study on the Separation of $^{55}Fe$, $^{90}FSr$$^{94}Nb$ in Radioactive Wastes (방사성 폐기물 내 $^{55}Fe$, $^{90}FSr$$^{94}Nb$의 분리 연구)

  • 이창헌;정기철;임석남;김원호;지광용
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.54-59
    • /
    • 2003
  • Several radionuclides are considered as an object of the assesment to develop a scaling factor and a periodical verification method which are needed for the evaluation of radionuclide inventory of various radioactive wastes from nuclear power plants in Korea. A selective separation of $^{55}Fe$, $^{90}FSr$$^{94}Nb$ which should be recovered individually for the radiochemical analysis was described in detail. Sorption and desorption behaviours of ion exchange and extraction chromatographic resins for Fe, Sr, Nb and co-existing metal ions were Investigated using an artificial waste solution simulated of chemical composition of real radioactive wastes. Separation conditions available for the sequential recovery of these metal ions from a single sample were optimized to minimize a discharge of radioactive wastes produced through the analytical process and a radiation exposure to analysts. Their recovery yields were measured with reliability.

  • PDF

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.

Interface System Construction for PWR Spent Fuel Rod Cutting and Pellet Pressing Device (PWR 핵연료 봉 커팅 및 펠렛 압출장치에 대한 연계 시스템 구축)

  • 정재후;윤지섭;흥동희;김영환;진재현;박기용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • The authors have developed two devices which cuts the spend fuel rod to an optimal size and extracts fuel pellet from the pieces of cut fuel rods. These devices are so important to reduce radioactive wastes that some advanced countries developed their own methods and devices. The authors have benchmarked from these methods and devices. For spent fuel rod cutting, the tube cutting method has been chosen. some mechanical properties of the fuel tube and pellet has been carefully considered for an optimal cutting size. For fuel pellet extraction, a mechanically extracting method has been adopted. The existing chemical method have turned out to be inappropriate because it produced large amount of radioactive wastes, in spite of its high fuel recovery characteristics. The developed method has an advantage that it can be applied to other fuel rods that have different shapes and sizes. The two devices are set up and operated in the hot cell where people can not go in, so that the devices have been designed to be controlled remotely and modulated for easy maintenance. And the performance of the devices has been tested by using simulated fuel rod. From the experimental results, the devices are supposed to be useful for reducing radioactive wastes.

  • PDF

Separation and purification of elements from alkaline and carbonate nuclear waste solutions

  • Alexander V. Boyarintsev ;Sergei I. Stepanov ;Galina V. Kostikova ;Valeriy I. Zhilov;Alfiya M. Safiulina ;Aslan Yu Tsivadze
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.391-407
    • /
    • 2023
  • This article provides a survey of wet (aqueous) methods for recovery, separation, and purification of uranium from fission products in carbonate solutions during the reprocessing of spent nuclear fuel and methods for removal of radionuclides from alkaline radioactive waste. The main methods such as selective direct precipitation, ion exchange, and solvent extraction are considered. These methods were compared and evaluated for reprocessing of spent nuclear fuel in carbonate media according to novel alternative non-acidic methods and for treatment processes of alkaline radioactive waste.