DOI QR코드

DOI QR Code

Separation and purification of elements from alkaline and carbonate nuclear waste solutions

  • Alexander V. Boyarintsev (Mendeleev University of Chemical Technology) ;
  • Sergei I. Stepanov (Mendeleev University of Chemical Technology) ;
  • Galina V. Kostikova (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences) ;
  • Valeriy I. Zhilov (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences) ;
  • Alfiya M. Safiulina (JSC Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials) ;
  • Aslan Yu Tsivadze (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences)
  • Received : 2021.08.30
  • Accepted : 2022.09.26
  • Published : 2023.02.25

Abstract

This article provides a survey of wet (aqueous) methods for recovery, separation, and purification of uranium from fission products in carbonate solutions during the reprocessing of spent nuclear fuel and methods for removal of radionuclides from alkaline radioactive waste. The main methods such as selective direct precipitation, ion exchange, and solvent extraction are considered. These methods were compared and evaluated for reprocessing of spent nuclear fuel in carbonate media according to novel alternative non-acidic methods and for treatment processes of alkaline radioactive waste.

Keywords

Acknowledgement

The work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation, project number 075-15-2020-782.

References

  1. H. Tomiyasu, Y. Asano, Environmentally acceptable nuclear fuel cycle - development of a new reprocessing system, Prog. Nucl. Energ. 32 (3) (1998) 421-427, https://doi.org/10.1016/S0149-1970(97)00037-1. 
  2. G.S. Goff, L.F. Brodnax, M.R. Cisneros, K.S. Williamson, F.L. Taw, I. May, W. Runde, Development of a novel alkaline based process for spent nuclear fuel recycling, in: AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City, United States, 2007. November 4-9. 
  3. K.W. Kim, Y.H. Kim, S.M. Kim, H.S. Seo, D.Y. Chung, H.B. Yang, J.K. Lim, K.S. Joe, E.H. Lee, A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media, in: NRC 7, 2008. Budapest, Hungary, August 24-29. 
  4. S.I. Stepanov, A.M. Chekmarev, Concept of spent nuclear fuel reprocessing, Dokl. Chem. 423 (1) (2008) 276-278, https://doi.org/10.1134/S0012500808110037. 
  5. C.Z. Soderquist, A.M. Johnsen, B.K. McNamara, B.D. Hanson, J.W. Chenault, K.J. Carson, S.M. Peper, Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide, Ind. Eng. Chem. Res. 50 (2011) 1813-1818, https://doi.org/10.1021/ie101386n. 
  6. S.F. Marsh, Partitioning High-Level Waste from Alkaline Solution: A Literature Survey, LANL, Los Alamos, New Mexico, 1993. LA-12528. 
  7. L. Stassen, J. Suthiram, Initial development of an alkaline process for recovery of uranium from 99Mo production process waste residue, J. Radioanal. Nucl. Chem. 305 (1) (2015) 41-50, https://doi.org/10.1007/s10967-015-3974-z. 
  8. M. Mathuthu, N.D. Mokhine, E. Stassen, Organic solvent extraction of uranium from alkaline nuclear waste, J. Radioanal. Nucl. Chem. 319 (2019) 687-693, https://doi.org/10.1007/s10967-019-06430-y. 
  9. Innovative Technology Summary Report. TRUEX/SREX Demonstration, Tanks Focus Area, Office of Science and Technology of USDOE, 1998. DOE/EM-0419. 
  10. I.V. Smirnov, M.D. Karavan, M.V. Logunov, I.G. Tananaev, B.F. Myasoedov, Extraction of radionuclides from alkaline and carbonate media, Radiochem 60 (5) (2018) 470-487, https://doi.org/10.1134/S1066362218050028. 
  11. K.J. Evans, N. Sridhar, B.C. Rollins, S. Chawla, J.A. Beavers, J. Page, Long-term evolution of corrosion potential of carbon steel in alkaline radioactive waste environments, Corros 75 (1) (2019) 106-119, https://doi.org/10.5006/2979. 
  12. M.J. Kupfer, Disposal of Hanford site tank wastes, in: W.W. Schultz, E.P. Horwitz (Eds.), Chemical Pretreatment of Nuclear Waste for Disposal, Springer, Boston, MA, 1995, pp. 25-37, https://doi.org/10.1007/978-1-4615-2526-4_3. 
  13. N.N. Anshits, O.A. Mikhailova, A.N. Salanov, A.G. Anshits, Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia), Fuel 89 (8) (2010) 1849-1862, https://doi.org/10.1016/j.fuel.2010.03.049. 
  14. J.M. Juoi, M.I. Ojovan, W.E. Lee, Microstructure and leaching durability of glass composite wasteforms for spent clinoptilolite immobilisation, J. Nucl. Mater. 372 (2-3) (2008) 358-366, https://doi.org/10.1016/j.jnucmat.2007.04.047. 
  15. R.T. Pabalan, V. Jain, R.F. Vance, S. Ioannidis, D.A. Pickett, C.S. Brazel, J.T. Persyn, E.J. Taylor, M.E. Inman, Hanford Tank Waste Remediation System Pretreatment Chemistry and Technology, U.S. NRC publication, Washington, DC, 2001. NUREG/CR-6714. 
  16. P.K. Baumgarten, R.M. Wallace, D.A. Whitehurst, J.M. Steed, Development of an ion-exchange process for removing cesium from high-level radioactive liquid wastes, in: C.J.M. Northrup (Ed.), Scientific Basis for Nuclear Waste Management. Advances in Nuclear Science & Technology, Springer, Boston, MA, 1980, https://doi.org/10.1007/978-1-4684-3839-0_105. 
  17. S.A. Dmitriev, F.A. Lifanov, A.E. Savkin, S.M. Laschenov, Handling of cubic residues of nuclear power plants, At. Energy 89 (5) (2000) 365-372 (in Russian).  https://doi.org/10.1023/A:1011338231351
  18. Improvements of Radioactive Waste Management at WWER Nuclear Power Plants, 2006. Vienna, Austria, IAEA-TECDOC-1492. 
  19. F. Sebesta, J. John, A. Molt, K. Rostikova, Study of Combined Processes for the Treatment of Liquid Radioactive Waste Containing Complexing Agents, Final Report of a Co-ordinated Research Project 1997-2001, 2003. IAEA-TECDOC-1336. 
  20. F. Sebesta, J. John, A. Molt, Removal of cesium and strontium from highly saline acidic or alkaline HLW using PAN-based composite absorbers, in: Proc. Sixth International Conference on Radioactive Waste Management and Environmental Remediation, ASME International, New York, 1997. Singapore, October 12-16. 
  21. T.A. Vereshchagina, E.A. Kutikhina, Y. Yu Chernykh, L.A. Solovyov, A.M. Zhizhaev, S.N. Vereshchagin, A.G. Anshits, One-step immobilization of cesium and strontium from alkaline solutions via a facile hydrothermal route, J. Nucl. Mater. 510 (2018) 243-255, https://doi.org/10.1016/j.jnucmat.2018.08.015. 
  22. A.Y. Noskova, A.V. Voronina, Treatment of alkaline liquid radioactive waste, containing boric acid, of atomic power station from long-lived fission products of 137Сs and 90Sr, in: VI International Youth Scientific Conference Dedicated to the 70th Anniversary of the Foundation Institute of Physics and Technology, 2019. Yekaterinburg, Russia, May 20-24, (in Russian). 
  23. P.M. Gavrilov, I.A. Merkulov, V.I. Matselya, D.V. Druz, Experience and issues of reprocessing liquid radioactive waste of complex chemical composition at FSUE "MCC", Radioactive Waste 1 (6) (2019) 62-68 (in Russian). 
  24. B. Todorov, R. Djingova, A. Nikiforova, Separation and determination of americium in low-level alkaline waste of NPP origin, Czech J. Phys. 56 (2006) D653-D658, https://doi.org/10.1007/s10582-006-1079-1. 
  25. C. Xiaotong, Q. Ying, W. Yang, F. Genna, L. Bing, T. Yaping, Treatment of reactive process wastewater with high-level ammonia by blow-off method, At. Energy Sci. Technol. 46 (2012) 133-136. 
  26. R.O.A. Rahman, H.A. Ibrahium, Y.-T. Hung, Liquid radioactive wastes treatment: a review, Water 3 (2) (2011) 551-565, https://doi.org/10.3390/w3020551. 
  27. H.D. Harmon, Trends in actinide processing at Hanfofd, J. Alloys Compd. 213-214 (1994) 341-343, https://doi.org/10.1016/0925-8388(94)90926-1. 
  28. L.H. Jay, M. Hyman, T. Gass, W.J. Seevers, in: Handbook of Complex Environmental Remediation Problems, first ed., McGraw-HILL Companies, Inc., New York, 2002. 
  29. J.R. Morsey, J.L. Swanson, A Primer on Hanford Defense Tank Waste and Prospects for Advanced Chemical Separations, PNNL, Richland, WA, 1991. 
  30. C.H. Delegard, V.F. Peretrukhin, V.P. Shilov, A.K. Pikaev, Alkaline Chemistry of Transuranium Elements and Technetium and the Treatment of Alkaline Radioactive Wastes, Report, 1995. Richland, Washington, WHC-EP-0817. 
  31. D.T. Hobbs, Caustic recovery from alkaline nuclear waste by an electrochemical separation process, Sep. Purif. Technol. 15 (3) (1999) 239-253, https://doi.org/10.1016/S1383-5866(98)00105-1. 
  32. R.D. Walton, Long-term management of defense high-level radioactivity waste-planes, policies, and program, Am. Inst. Chem. Eng. Symp. Ser. 75 (191) (1979) 88-92. 
  33. J.J. Prowse, M.A. Schiffhauer, Safety Analysis Report for Supernatant Treatment System, West Valley Nuclear Services Company, West Valley, NY, 1992. WVNS-SAR-004. 
  34. P.K. Baumgarten, R.M. Wallace, D.A. Whitehurst, J.M. Steed, Development of an ion-exchange process for removing cesium from high-level radioactive liquid wastes, in: C.J.M. Northrup (Ed.), Scientific Basis for Nuclear Waste Management. Advances in Nuclear Science & Technology, Springer, Boston, MA, 1980, https://doi.org/10.1007/978-1-4684-3839-0_105. 
  35. Alternatives for High-Level Waste at the Savannah River Site. Interim Report, Committee on Cesium Processing Alternatives for High-Level Waste at the Savannah River Site, National Academies Press, Washington, DC, 1999, https://doi.org/10.17226/9703. 
  36. H. Rogers, J. Bowers, D.G. Anderson, An isotope dilution-precipitation process for removing radioactive cesium from wastewater, J. Hazard. Mat. 243 (2012) 124-129, https://doi.org/10.1016/j.jhazmat.2012.10.006. 
  37. B.D. Roach, N.J. Williams, N.C. Duncan, L.H. Delmau, D.L. Lee, J.F. Birdwell Jr., B.A. Moyer, Radiolytic treatment of the next-generation caustic-side solvent extraction (NGS) solvent and its effect on the NGS process, Solvent Extr. Ion Exch. 33 (2) (2015) 134-151, https://doi.org/10.1080/07366299.2014.952531. 
  38. B.A. Moyer, J.F. Birdwell, P.V. Bonnesen, L.H. Delmau, in: K. Gloe (Ed.), Macrocyclic Chemistry: Current Trends and Future Perspectives, Springer, Dordrecht, The Netherlands, 2005. 
  39. P.V. Bonnesen, L.H. Delmau, B.A. Moyer, G.J. Lumetta, Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste, Solvent Extr. Ion Exch. 21 (2003) 141-170, https://doi.org/10.1081/sei-120018944. 
  40. D.T. Hobbs, T.B. Peters, K.M.L. Taylor-Pashow, S.D. Fink, Development of an improved titanate-based sorbent for strontium and actinide separations under strongly alkaline conditions, Sep. Sci. Technol. 46 (1) (2010) 119-129, https://doi.org/10.1080/01496395.2010.492772. 
  41. D.J. McCabe, High level waste system impacts from small column ion exchange implementation, WSRC-TR-2005-00034, https://doi.org/10.2172/881518, 2005. 
  42. T. Hang, C.A. Nash, S.E. Aleman, Modeling ion-exchange processing with spherical resins for cesium removal, Sep. Sci. Technol. 48 (14) (2013) 2090-2098, https://doi.org/10.1080/01496395.2013.787627. 
  43. S. Andersson, F. Drouet, C. Ekberg, J.-O. Liljenzin, D. Magnusson, M. Nilsson, T. Retegan, G. Skarnemark, Partitioning and Transmutation. Annual Report 2004, Svensk Karnbranslehantering AB, 2005, pp. 1-60. SKB-R-05-13. 
  44. J. Magill, V. Berthou, D. Haas, J. Galy, R. Schenkel, H.-W. Wiese, G. Heusener, J. Tommasi, G. Youinou, Impact limits of partitioning and transmutation scenarios on radiotoxicity of actinides in radioactive waste, Nucl. Energ. 42 (5) (2003) 263-277, https://doi.org/10.1680/nuen.42.5.263.37622. 
  45. L.H. Baestle, Burning of actinides: a complementary waste management option? IAEA Bull 34 (3) (1992) 32-34. 
  46. I.V. Smirnov, E.S. Stepanova, M.Yu. Tyupina, N.M. Ivenskaya, S.R. Zaripov, S.R. Kleshnina, S.E. Solovieva, I.S. Antipin, Americium and cesium extraction from alkaline media by calix[8]arenes with p-tert-butyl and isononyl substituents on the upper rim: aggregation effect, Macroheterocycles 10 (2) (2017) 196-202, https://doi.org/10.6060/mhc161070s. 
  47. S.I. Stepanov, A.V. Boyarintsev, Reprocessing of spent nuclear fuel in carbonate media: problems, achievements, and prospects, Nucl. Eng. Technol. 54 (2022) 2339-2358, https://doi.org/10.1016/j.net.2022.01.009. 
  48. G.R. Choppin, Actinide science: fundamental and environmental aspects, J. Nucl. Radiochem. Sci. 6 (1) (2005) 1-5, https://doi.org/10.14494/jnrs2000.6.1. 
  49. A.V. Boyarintsev, S.I. Stepanov, A.R. Chekhlov, A.M. Chekmarev, A.Yu. Tsivadze, Chemistry of the CARBEX process: indetification of absorption bands of the ligands in the electronic spectra of aqueous solutions of Na4[UO2(O2)(CO3)2], Dokl. Chem. 469 (2) (2016) 227-232, https://doi.org/10.1134/S0012500816080024. 
  50. Y.N. Mikhailov, G.M. Lobanova, R.N. Shchelokov, X-ray structural study of guanidonium dicarbonate peroxouranylate dihydrate crystals (CN3H6)42О2(CО3)2-H2О, Zh. Neorg. Khim. 26 (3) (1981) 718-722 (in Russian). 
  51. D.Y. Chung, M.S. Park, K.Y. Lee, E.H. Lee, K.W. Kim, J.K. Moon, Decomposition of uranyl peroxo-carbonato complex ion in the presence of metal oxides in carbonate media, J. Radioanal Nucl. Chem. 306 (2015) 761-768, https://doi.org/10.1007/s10967-015-4196-0. 
  52. D.Y. Chung, M.S. Park, K.Y. Lee, E.H. Lee, K.W. Kim, J.K. Moon, Decomposition of uranyl peroxo-carbonato complex ion in the presence of metal oxides in carbonate media, in: 4th International Nuclear Chemistry Conference, 2014. Maresias, Brasil, September 14-19. 
  53. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions, J. Nucl. Sci. Technol. 38 (10) (2001) 866-871, https://doi.org/10.1080/18811248.2001.9715107. 
  54. H. Tomiyasu, K. Mizumachi, Y. Asano, Method for reprocessing spent nuclear fuel under mild condition, Patent JPH09113681A (1997). 
  55. Y. Asano, N. Asanuma, T. Ito, M. Kataoka, S. Fujino, T. Yamamura, W. Sugiyama, H. Tomiyasu, K. Mizumachi, Y. Ikeda, Y. Wada, M. Asou, Study on a nuclear fuel reprocessing system based on the precipitation method in mild aqueous solutions, Nucl. Technol. 120 (3) (1997) 198-210, https://doi.org/10.13182/NT97-A35411. 
  56. Y. Asano, H. Tomiyasu, New reprocessing system using the complex formation of hexavalent actinide ions with carbonate, in: Proceedings of the 2nd Japan-Korea Seminar of Advanced Reactors, 1996. Tokyo, Japan, October 15-17. 
  57. N. Asanuma, Y. Asano, H. Tomiyasu, Concept of a new nuclear fuel reprocessing in non-acidic aqueous solutions, in: The 5th International Conference on Recycling, Conditioning and Disposal, 1998. Paris, France, October 25-28. 
  58. W.W. Schulz, L.A. Bray, Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solutions - a technology review and assessment, Sep. Sci. Technol. 22 (2-3) (1987) 192-214, https://doi.org/10.1080/01496398708068948. 
  59. A. Oonato, G. Grossi, L. Pietrelli, G. Torri, HLW decontamination by means of chemical precipitation and ion exchange, in: Waste Management Research Abstracts, IAEA, Vienna, 1986. No. 17. 
  60. S.M. Peper, L.F. Brodnax, S.E. Field, R.A. Zehnder, S.N. Valdez, W.H. Runde, Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media, Ind. Eng. Chem. Res. 43 (26) (2004) 8188-8193, https://doi.org/10.1021/ie049457y. 
  61. S.C. Smith, S.M. Peper, M. Douglas, K.L. Ziegelgruber, E.C. Finn, Dissolution of uranium oxides under alkaline oxidizing conditions, J. Radioanal. Nucl. Chem. 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8. 
  62. G.S. Goff, F.L. Taw, S.M. Peper, L.F. Brodnax, S.E. Field, Separation of uranium from fission products in spent nuclear fuel using aqueous hydrogen peroxide-carbonate solutions, in: AIChE Annual Meeting, Nuclear Engineering Division, 2006. San Francisco, United States, November 12-17. 
  63. G.S. Goff, L.F. Brodnax, M.R. Cisneros, W.H. Runde, Redox chemistry of actinides in peroxide-carbonate media: applications to developing a novel process for spent nuclear fuel reprocessing, in: AIChE Annual Meeting, Environmental Division, Salt Lake City, United States, 2007. November 4-9. 
  64. G.S. Goff, L.F. Brodnax, M.R. Cisneros, S.M. Peper, S.E. Field, B.L. Scott, W.H. Runde, First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)24-, in UO2-H2O2-K2CO3 solutions, Inorg. Chem. 47 (6) (2008) 1984-1990, https://doi.org/10.1021/ic701775g. 
  65. K.W. Kim, D.Y. Chung, H.B. Yang, G.I. Park, E.H. Lee, K. Song, K.C. Song, An oxidative leaching of uranium in a H2O2-CO32- system for a recovery of U alone from spent fuel without TRU, in: GLOBAL 2009 Congress: The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives, 2009. Paris, France, September 6-11. 
  66. K.W. Kim, Y.H. Kim, S.Y. Lee, J.W. Lee, K.S. Joe, E.H. Lee, J.S. Kim, K. Song, K.C. Song, Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide, Environ. Sci. Technol. 43 (7) (2009) 2355-2361, https://doi.org/10.1021/es802951b. 
  67. K.W. Kim, Y.H. Kim, S.Y. Lee, E.H. Lee, K.C. Song, K. Song, Study on electrolytic recoveries of carbonate salt and uranium from a uranyl peroxo carbonato complex solution generated from a carbonate-leaching process, Ind. Eng. Chem. Res. 48 (4) (2009) 2085-2092, https://doi.org/10.1021/ie800990r. 
  68. E.H. Lee, J.K. Lim, D.Y. Chung, H.B. Yang, J. Yoo, K.W. Kim, The oxidativedissolution behaviors of fission products in a Na2CO3-H2O2 solution, J. Radioanal. Nucl. Chem. 281 (3) (2010) 339-346, https://doi.org/10.1007/s10967-009-0018-6. 
  69. K.W. Kim, E.H. Lee, D.Y. Chung, H.B. Yang, J.K. Lim, K.S. Cho, K.C. Song, K.S. Song, K.Y. Jee, Process for recovering isolated uranium from spent nuclear fuel using a highly alkaline carbonate solution, Patent US7749469B2 (2010). 
  70. G.D. Jarvinen, W.H. Runde, G.S. Goff, Development of alkaline solution separations for potential partitioning of used nuclear fuels, in: Proceedings of the Symposium on Emerging Trends in Separation Science and Technology, 2010. Kalpakkam, India, March 1-4. 
  71. L. Koch, R. Molinct, T. Adachi, Method for recovering americium from irradiated nuclear-fuel waste, Patent EP0210443A1 (1987). 
  72. K.L. Nash, S.B. Clark, G. Lumetta, Selective Separation of Americium from Lanthanides and Curium by Aqueous Processing with Redox Adjustment, Washington State University, 2009, pp. 1-25. DE-FC07-05ID14644. 
  73. T.C. Shehee, L.R. Martin, K.L. Nash, Solid-liquid separation of oxidized americium from fission product lanthanides, in: IOP Conference Series: Materials Science and Engineering, 2009. San Francisco, USA, July 12-17. 
  74. C.Z. Soderquist, B.K. McNamara, B. Oliver, Dissolution of uranium metal without hydride formation or hydrogen gas generation, J. Nucl. Mater. 378 (4) (2008) 299-304, https://doi.org/10.1016/j.jnucmat.2008.05.014. 
  75. C.Z. Soderquist, B. Hanson, Dissolution of spent nuclear fuel in carbonate-peroxide solution, J. Nucl. Mater. 396 (2-3) (2010) 159-162, https://doi.org/10.1016/j.jnucmat.2009.11.001. 
  76. D.D. Walker, J.P. Bibler, R.M. Wallace, M.A. Erba, J.P. Ryan Jr., Technetium removal processes for soluble defense high-level waste, in: Symposium Proceedings, Materials Research Society Annual Meeting, 1984. Boston, MA, USA, November 26-29. 
  77. P.K. Verma, P.K. Mohapatra, Highly efficient separation of ruthenium from alkaline radioactive feeds using an anion exchange resin, Radiochim. Acta 108 (8) (2020) 603-613, https://doi.org/10.1515/ract-2019-3182. 
  78. P.K. Verma, P.K. Mohapatra, Ruthenium recovery from alkaline radioactive feeds using an extraction chromatography resin containing Aliquat 336, Sep. Purif. Technol. 259 (2021), 118099, https://doi.org/10.1016/j.seppur.2020.118099. 
  79. N.M. Hassan, D.J. McCabe, W.D. King, M.L. Crowder, Small-scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102, SRTC, Westinghouse Savannah River Company, Aiken, 2000. WBNF-003-98-0219. 
  80. R.L. Bruening, K.E. Krakowiak, G. Maas, B.J. Tarbet, Processes for Separating Cesium from Industrial Streams Containing Other Alkali Metals Using Poly(hydroxyarylene) Polymeric Resins, Patent EP0789608A1, 1994. 
  81. L.A. Bray, J.E. Amonette, G.N. Brown, T.M. Kafka, S.F. Yates, Efficient Separations and Processing Crosscutting Program: Develop and Test Sorbents, FY 1995 Annual Progress Report, PNNL, Richland, WA, 1995. PNL-10750 (UC-2030). 
  82. R. Chiarizia, E.P. Horwitz, R.A. Beauvais, S.D. Alexandratos, Diphonix-CS: a novel combined cesium and strontium selective ion exchange resin, Solvent Extr. Ion Exch 16 (3) (1998) 875-898, https://doi.org/10.1080/07366299808934558. 
  83. Yu.P. Novikov, B.F. Myasoedov, S.A. Ivanova, Sorption of neptunium with anionite from alkaline solutions, Zh. Anal. Khim. 27 (2) (1972) 63-67 (in Russian). 
  84. N.C. Schroeder, S. Radzinski, K.R. Ashley, J. Ball, F. Stanmore, G. Whitener, Technetium Partitioning for the Hanford Tank Waste Remediation System: Sorption of Technetium from DSS and DSSF-7 Waste Simulants Using Reillex-HPQ Resin, Report, LANL, 1995. LA-UR95-40. 
  85. R.F. Hirsch, J.D. Portock, Anion exchange equilibria in alkaline media, Anal. Chim. Acta 49 (3) (1970) 473-479.  https://doi.org/10.1016/S0003-2670(00)86823-3
  86. W.W. Schulz, Distribution Data for Various Cs, Sr, and Tc Sorbents, Atlantic Richfield Hanford Company Quarterly Report, 1975, pp. 34-37. ARH-ST-110-D. 
  87. M.E. Johnson, W.B. Barton, L.A. Gale, Sixteen years of cesium recovery processing at Hanford's B Plant, in: American Nuclear Society International Conference Spectrum vol. 86, Niagra Falls, NY, USA, 1986. September 14-18. 
  88. P.K. Baumgarten, R.M. Wallace, D.A. Whitehurst, J.M. Steed, Development of an ion-exchange process for removing cesium from high-level radioactive liquid wastes, in: Symposium on the Scientific Basis for Nuclear Waste Management, 1979. Boston, MA, USA, November 26-29. 
  89. R.M. Wallace, R.B. Ferguson, Development of an improved ion-exchange process for removing cesium and strontium from high-level radioactive liquid wastes, in: Symposium on the Scientific Basis for Nuclear Waste Management, 1980. Boston, MA, USA, November 16-20. 
  90. S.K. Samanta, M. Ramaswamy, B.M. Misra, Studies on cesium uptake by phenolic resins, Sep. Sci. Technol. 27 (2) (1992) 255-267, https://doi.org/10.1080/01496399208018877. 
  91. J.P. Bibler, R.M. Wallace, Cesium-specific phenolic ion exchange resin, Patent US5441991A (1995). 
  92. S.E. Aleman, L.L. Hamm, F.G. Smith, Ion Exchange Modeling of Cesium Removal from Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin, Report, Washington Savannah River Company, SRS, Aiken, SC, 2007. WSRC-STI-2007-00030. 
  93. M.V. Ernest, J.P. Bibler, R.D. Whitley, N.H.L. Wang, Development of a carousel ion-exchange process for removal of cesium-137 from alkaline nuclear waste, Ind. Eng. Chem. Res. 36 (1997) 2775-2788, https://doi.org/10.1021/ie960729+. 
  94. V.V. Milyutin, P.G. Zelenin, P.V. Kozlov, M.B. Remizov, D.A. Kondrutskii, Sorption of cesium from alkaline solutions onto resorcinol-formaldehyde sorbents, Radiochemistry 61 (6) (2019) 714-718 (in Russian).  https://doi.org/10.1134/S1066362219060122
  95. J.P. Bibler, R.M. Wallace, L.A. Bray, Testing a new cesium-specific ion exchange resin for decontamination of alkaline high-activity waste, in: Waste Management '90, Proceedings of the Symposium on Waste Management, 1990. Tucson, AZ, USA, February 1 - March 25. 
  96. N. Varadarajan, J. Gabriel, P. Sen, M.K.P. Nair, A modified method for the synthesis of polycondensate phenolic resin with iminodiacetic acid (IDA) functional group for treatment of alkaline waste from reprocessing plants, in: International Symposium on Radiochemistry and Radiation Chemistry (Plutonium - 50 Years), 1991. Bombay, India, February 4-7. 
  97. M.J. Hudson, A. Dyer, The use of coordinating copolymers to extract 106Ru from simulated nuclear wastes, in: D.H. Logsdail, A.L. Mills (Eds.), Solvent Extraction and Ion Exchange in the Nuclear Fuel Cycle, Ellis Horwood Ltd., London, U.K., 1985, pp. 157-168. 
  98. A. Dyer, K.D. Helps, M.J. Hudson, C. Sharp, Extraction of 106Ru from simulated liquid nuclear wastes using organic and inorganic phases with covalently-bound sulphur ligands. Extraction with inorganic sulphides, in: P.A. Williams, M.J. Hudson (Eds.), Recent Developments in Ion Exchange, Elsevier Applied Science, New York, 1988, pp. 155-164. 
  99. J.D. Sherman, Application of molecular sieve zeolites to pollution abatement, in: C. Calmon, H. Gold (Eds.), Ion Exchange for Pollution Control vol. II, CRC Press, Inc., Boca Raton, 1980, pp. 227-236. 
  100. A. Dyer, S.A. Malik, A. Araya, T.J. McConville, New anion exchangers of the zeolite type, in: P.A. Williams, M.J. Hudson (Eds.), Recent Developments in Ion Exchange, Elsevier Applied Science, New York, 1988, pp. 257-263. 
  101. G.A. Rayford, R.G. Dosch, V.P. Chackumcheril, Method of using novel silicotitanates, Patent US6110378A (2000). 
  102. R.G. Dosch, E.A. Klavetter, H.P. Stephens, Crystalline Silicotitanates - New Ion Exchanger for Selective Removal of Cesium and Strontium from Radwastes, Sandia Natl. Lab., 1996, pp. 1-18. SAND96-1929. 
  103. F.F. Fondeur, Crystalline Silicotitanate Ion Exchange Support for Salt-Alternatives, Savannah River Site, 2000. SRT-LWP-2000-00189. 
  104. M. Nyman, T.M. Nenoff, T.J. Headley, Characterization of UOP IONSIV IE-911, Technical Report, Sandia National Laboratories, Albuquerque, NM, 2001. SAND2001-0999. 
  105. W. Barton, L. Gale, M. Johnson, Sixteen Years of Cesium Recovery Processing at Hanford's B Plant, Technical Report, Rockwell Hanford Operations, Niagara Falls, NY, 1986. RHO-RE-SA-169. 
  106. S. Zouad, C. Loos-Neskovic, Recovery of fission products by fixation on inorganic absorbents, in: P.A. Williams, M.J. Hudson (Eds.), Recent Developments in Ion Exchange, Elsevier Applied Science, New York, 1990, pp. 151-159. 
  107. E.W. Hooper, Inorganic sorbents for aqueous effluent treatment, in: M.J. Slater (Ed.), Ion Exchange Advances, Proceedings of lEX '92, Elsevier Applied Science, London, 1992, pp. 310-317. 
  108. A.D. Turner, N.J. Bridger, C.P. Jones, J.S. Pottinger, A.R. Junkison, P.A. Fletcher, M.D. Neville, P.M. Allen, R.I. Taylor, W.T.A. Fox, P.G. Griffiths, Electrochemical Ion-Exchange for Active Liquid Waste Treatment, Final Report, Harwell Laboratory, Oxfordshire, UK, 1992. AEA-D&R-0441. 
  109. E.W. Hooper, The application of inorganic ion exchangers to the treatment of medium active effluents, in: D.H. Logsdail, A.L. Mills (Eds.), Solvent Extraction and Ion Exchange in the Nuclear Fuel Cycle, Ellis Horwood Ltd., 1985, pp. 145-155. 
  110. R.E. Lewis, T.A. Butler, E. Lamb, An aluminosilicate ion exchanger for recovery and transport of 137Cs from fission-product wastes, Nucl. Sci. Eng. 24 (1966) 118-122, https://doi.org/10.13182/NSE66-A18296. 
  111. W.W. Schulz, Removal of Radionuclides from Hanford Defense Waste Solutions, Rockwell Hanford Operations, 1980, p. 82. RHO-SA-51. 
  112. W.W. Schulz, J.W. Koenst, D.R. Tallant, Application of inorganic sorbents in actinide separations processes, in: J.D. Navratil, W.W. Schulz (Eds.), Actinide Separations, American Chemical Society, Washington, D.C., 1980, pp. 17-32. 
  113. Y. Ying, L. Meiqiong, F. Xiannua, Treatment of liquid wastes containing actinides and fission products using sodium titanate as an ion exchanger, in: Inorganic Ion Exchangers and Adsorbents for Chemical Processing in the Nuclear Fuel Cycle, 1985. Vienna, Austria, June 12-15, IAEA-TECDOC-337. 
  114. F.A. Zakharova, M.M. Orlova, D.P. Alekseeva, N.N. Krot, Sorption of heptavalent neptunium on some metal hydroxides, Sov. Radiochem. 16 (4) (1974) 546-548 (in Russian). 
  115. Y. Shiokawa, H. Yamana, A. Sato, S. Suzuki, The discrimination of the oxidation states of neptunium in sodium hydroxide solutions by means of chromatography on alumina, Bull. Chem. Soc. Jpn. 55 (7) (1982) 2051-2055.  https://doi.org/10.1246/bcsj.55.2051
  116. A. Bilewicz, B. Bartos, J. Narbutt, H. Polkowska-Motrenko, Composite ion exchanger for removal of sodium-24 from in neutron activation analysis of biological materials, Anal. Chem. 59 (13) (1987) 1737-1738, https://doi.org/10.1021/ac00140a033. 
  117. L.A. Bray, F.T. Hara, Use of titanium-treated zeolite for plutonium, strontium, and cesium removal from West Valley alkaline wastes and sludge wash wastes, in: First Hanford Separations Science Workshop, 1991, p. 221. Richland, WA, PNL-SA-21775. 
  118. F. Sebesta, V. Stefula, Composite ion exchanger with ammonium molybdophosphate and its properties, Radioanal, Nucl. Chem. 140 (1) (1990) 15-21, https://doi.org/10.1007/BF02037360. 
  119. F. Sebesta, A. Motl, J. John, Composite ion-exchangers, their development and use, in: Workshop of the Czech Technical University in Prague, 1992. Prague, Czechoslovakia, January 20-24. 
  120. Y. Wang H. Gao, Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs), J. Colloid Interface Sci. 301 (2006) 19-26, https://doi.org/10.1016/j.jcis.2006.04.061. 
  121. H.V. Goulding, S.E. Hulse, W. Clegg, R.W. Harrington, H.Y. Playford, R.I. Walton, A.M. Fogg, Yb3O(OH)6Cl.2H2O: an anion-exchangeable hydroxide with a cationic inorganic framework structure, J. Am. Chem. Soc. 132 (2010) 13618-13620, https://doi.org/10.1021/ja104636x. 
  122. N. Shen, Z. Yang, S. Liu, X. Dai, C. Xiao, K. Taylor-Pashow, D. Li, C. Yang, J. Li, Y. Zhang, M. Zhang, R. Zhou, Z. Chai, S. Wang, 99TcO4- removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework, Nat. Commun. 11 (2020) 5571, https://doi.org/10.1038/s41467-020-19374-9. 
  123. S. Wang, E.V. Alekseev, J. Diwu, W.H. Casey, B.L. Phillips, W. Depmeier, T.E. Albrecht-Schmitt, NDTB-1: a supertetrahedral cationic framework that removes TcO4- from solution, Angew. Chem. Int. Ed. 49 (2010) 1057-1060, https://doi.org/10.1002/anie.200906397. 
  124. J. Li, X. Dai, L. Zhu, C. Xu, D. Zhang, M.A. Silver, P. Li, L. Chen, Y. Li, D. Zuo, H. Zhang, C. Xiao, J. Chen, J. Diwu, O.K. Farha, T.E. Albrecht-Schmitt, Z. Chai, S. Wang, 99TcO4- remediation by a cationic polymeric network, Nat. Commun. 9 (2018) 3007, https://doi.org/10.1038/s41467-018-05380-5. 
  125. S.K. Fiskum, L.F. Pease, R.A. Peterson, Review of ion exchange technologies for cesium removal from caustic tank waste, Solvent Extr, Ion Exch 38 (6) (2020) 573-611, https://doi.org/10.1080/07366299.2020.1780688. 
  126. A. Nakajima, T. Sakaguchi, Recovery of tannin immobilized on agarose, Chem. Tech. Biotechnol. 40 (4) (1987) 223-232, https://doi.org/10.1002/jctb.280400402. 
  127. T. Sakaguchi, A. Nakajima, Recovery of uranium from seawater by immobilized tannin, Sep. Sci. Technol. 22 (6) (1987) 1609-1623, https://doi.org/10.1080/01496398708058421. 
  128. T. Sakaguchi, A. Nakajima, Recovery of uranium by biological substances, in: H.H. Baiid, S. Vijayan (Eds.), Proc. 2nd International Conference on Separations Science and Technology, Canadian Society for Chemical Engineering, Ottawa, 1989, pp. 331-336. 
  129. A. Nakajima, T. Sakaguchi, Recovery of uranium by tannin immobilized on matrices which have amino groups, Chem. Tech. Biotechnol. 47 (1) (1990) 31-38, https://doi.org/10.1002/jctb.280470105. 
  130. Y. Kamei, W. Shirato, Ionic and colloidal substance removal from alkaline liquid waste - especially nuclear fuel processing waste, using solid tannin to capture the solids, and filtering, Patent JP90109487 (1990). 
  131. H. Motohide, Method of processing waste water containing actinide elements by fixed tannin, Patent JP2-32299A (1990). 
  132. Y. Shen, N. Chu, S. Yang, X. Li, H. Cao, G. Tian, Quaternary phosphonium-grafted porous aromatic framework for preferential uranium adsorption in alkaline solution, Ind. Eng. Chem. Res. 58 (39) (2019) 18329-18335, https://doi.org/10.1021/acs.iecr.9b03580. 
  133. X.M. Li, F.F. Dong, Y.W. Huang, X.P. Zhi, Y.L. Shen, Synthesis of quaternary ammonium salt functionalized large-particle silica gel for removal of uranium, J. Radioanal. Nucl. Chem. 329 (2021) 171-177, https://doi.org/10.1007/S10967-021-07787-9. 
  134. X.T. Chen, L.F. He, R.Z. Liu, C. Zhang, B. Liua, Y.P. Tanga, Effective uranium(VI) sorption from alkaline media using bi-functionalized silica-coated magnetic nanoparticles, RSC Adv. 5 (2015) 56658-56665, https://doi.org/10.1039/C5RA07436C. 
  135. J.Q. Li, L.L. Gong, X.F. Feng, L. Zhang, H.Q. Wu, C.S. Yan, Y.Y. Xiong, H.Y. Gao, F. Luo, Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal-organic framework, Chem. Eng. J. 316 (2017) 154-159, https://doi.org/10.1016/j.cej.2017.01.046. 
  136. M. Nogami, Y. Fujii, T. Sugo, Radiation resistance of pyridine type anion exchange resins for spent fuel treatment, J. Radioanal. Nucl. Chem. 203 (1) (1996) 109-117, https://doi.org/10.1007/BF02060385. 
  137. L. Rao, Recent international R&D activities in the extraction of uranium from seawater, Technical report, (LBNL), Berkeley, CA, USA, https://doi.org/10.2172/1000969, 2011. 
  138. H.J. Schenk, L. Astheimer, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials, Sep. Sci. Technol. 17 (11) (1982) 1293-1308, https://doi.org/10.1080/01496398208056103. 
  139. L. Astheimer, H.J. Schenk, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional groups, Sep. Sci. Technol. 18 (4) (1983) 307-339, https://doi.org/10.1080/01496398308068568. 
  140. M. Nogami, S.Y. Kim, N. Asanuma, Y. Ikeda, Adsorption behavior of amidoxime resin for separating actinide elements from aqueous carbonate solutions, J. Alloys Compd. 374 (1-2) (2004) 269-271, https://doi.org/10.1016/j.jallcom.2003.11.099. 
  141. N. Asanuma, M. Harada, Y. Ikeda, M. Nogami, K. Suzuki, T. Kikuchi, H. Tomiyasu, Simple reprocessing process based on anodic dissolution of fuels in aqueous carbonate solution and purification of U and Pu by amidoxime resins, in: Global 2003: Atoms for Prosperity: Updating Eisenhower's Global Vision for Nuclear Energy, 2003. New Orleans, USA, November 16-20. 
  142. H.-B. Pan, W. Liao, C.M. Wai, Y. Oyola, C.J. Janke, G. Tian, L. Rao, Carbonate-H2O2 leaching for sequestering uranium from seawater, Dalton Trans. 43 (28) (2014) 10713-10718, https://doi.org/10.1039/C3DT53404A. 
  143. G. Tian, S.J. Teat, Z. Zhang, L. Rao, Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime, Dalton Trans. 41 (38) (2012) 11579-11586, https://doi.org/10.1039/C2DT30978E. 
  144. G. Tian, S.J. Teat, L. Rao, Thermodynamic studies of U(VI) complexation with glutardiamidoxime for sequestration of uranium from seawater, Dalton Trans. 42 (16) (2013) 5690-5696, https://doi.org/10.1039/C3DT32940B. 
  145. N.P. Molochnikova, I.G. Tananaev, G.V. Myasoedova, B.F. Myasoedov, Sorption recovery of radionuclides from alkaline solutions using fibrous "filled" sorbents, Radiochemistry 49 (2007) 64-66, https://doi.org/10.1134/S1066362207010109. 
  146. B.L. Rivas, H.A. Maturana, S. Villegas, Adsorption behavior of metal ions by amidoxime chelating resin, J. Appl. Polym. Sci. 77 (2000) 1994-1999, https://doi.org/10.1002/1097-4628(20000829)77:9<1994::AID-APP15>3.0.CO. 2-P. 
  147. S. Das, A.K. Pandey, A. Athawale, V. Kumar, Y.K. Bhardwaj, S. Sabharwal, V.K. Manchanda, Chemical aspects of uranium recovery from seawater by amidoximated electron-beam-grafted polypropylene membranes, Desalination 232 (1-3) (2008) 243-253, https://doi.org/10.1016/j.desal.2007.09.019. 
  148. H.-B. Pan, L.-J. Kuo, C.M. Wai, N. Miyamoto, R. Joshi, J.R. Wood, J.E. Strivens, C.J. Janke, Y. Oyola, S. Das, R.T. Mayes, G.A. Gill, Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater, Ind. Eng. Chem. Res. 55 (15) (2016) 4313-4320, https://doi.org/10.1021/acs.iecr.5b03307. 
  149. A.A. Sameh, Nuclear fuel decontamination in basic solutions, in: Proceedings of American Nuclear Society International Topical Meeting on Fuel Reprocessing and Waste Management, 1984. Jackson Hole, WY, USA. 
  150. A.A. Sameh, U. Berndt, W. Rottmann, W. Leifeld, U. Kaminski, Nuclear fuel reprocessing in basic solutions, in: Proceedings of the International Conference on Nuclear Fuel Reprocessing and Waste Management - RECOD 87, 1987. Paris, France, August 23-29. 
  151. Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers, Technical Reports Series, No. 408, IAEA, Vienna, 2002.. 
  152. B.F. Myasoedov, Z.K. Karalova, V.V. Nekrasova, L.M. Rodionova, Extraction of actinides and lanthanides from alkaline solutions by quaternary ammonium bases and alkylpyrocatechols, J. Inorg. Nucl. Chem. 42 (10) (1980) 1495-1499, https://doi.org/10.1016/0022-1902(80)80119-9. 
  153. Z.K. Karalova, E.A. Lavrinovich, B.F. Myasoedov, L.A. Fedorov, S.A. Sokolovskij, Solvent extraction and separation of actinoids in carbonate solutions using condensed alkylaminophenols, Sov. Radiochem. 31 (5) (1989) 38-45 (in Russian). 
  154. V.V. Nekrasova, Z.K. Karalova, B.F. Myasoedov, Investigation of the behavior of europium and some actinide elements in alkaline tartrate solutions, Sov. Radiochem. 23 (2) (1981) 259-263 (in Russian). 
  155. A.M. Rozen, A.S. Nikiforov, N.A. Kartasheva, Z.J. Nikolotova, I.G. Tananaev, Neptunium(VII) extraction from alkaline media, Dokl. Akad. Nauk (USSR) 312 (4) (1990) 897-900 (in Russian). 
  156. Z.K. Karalova, E.A. Lavrinovich, S.A. Ivanova, B.F. Myasoedov, L.A. Fedorov, S.A. Sokolovskii, Study of the extraction of heptavalent neptunium by phenolic extractants from strong alkaline solutions, Sov. Radiochem. 34 (3) (1992) 132-138 (in Russian). 
  157. Z.K. Karalova, E.A. Devirts, B.F. Myasoedov, Use of beta-diketones for isolation and separation of elements in carbonate media, Sov. Radiochem. 29 (1) (1987) 33-39 (in Russian). 
  158. Z.K. Karalova, E.A. Lavrinovich, B.F. Myasoedov, Use of actinides in uncommon oxidation states for their extraction and separation from alkaline solutions, J. Radioanal. Nucl. Chem. 159 (1992) 259-266, https://doi.org/10.1007/BF02040719 (in Russian). 
  159. Z.K. Karalova, B.F. Myasoedov, L.M. Rodionova, Possibility of element extraction separation in alkaline media. [Extraction separation of Am, Cm, Cf, Bk from La, Ce, Sm, Eu, Gd, Th, Pa, U, Pu, Zr, Nb, Cs, Ru, Fe], Sov. Radiochem. 23 (1) (1981) 52-57 (in Russian). 
  160. Z.K. Karalova, T.V. Bukina, B.F. Myasoedov, Extraction of transplutonium elements from carbonate solutions by primary amines, Sov. Radiochem. 25 (5) (1983) 595-598 (in Russian). 
  161. Z.K. Karalova, T.V. Bukina, B.F. Myasoedov, L.M. Rodionova, The use of decylamine for extraction of actinides and lanthanides from carbonate solutions, Sov. Radiochem. 27 (1) (1985) 41-44 (in Russian). 
  162. Z.K. Karalova, T.I. Bukina, E.A. Lavrinovich, B.F. Myasoedov, Aminomethyl derivatives of alkyl phenols as extractants for isolation and separation of actinides in alkaline and carbonate solutions, Sov. Radiochem. 31 (6) (1989) 81-87 (in Russian). 
  163. Z.K. Karalova, V.V. Nekrasova, Z.I. Pyzhova, L.M. Rodionova, B.F. Myasoedov, Extraction separation of actinium, americium and europium from alkali solutions with quaternary ammonium compounds, Sov. Radiochem. 20 (6) (1978) 845-850 (in Russian). 
  164. T.I. Bukina, Z.K. Karalova, B.F. Myasoedov, Extraction-chromatographic behaviour of Am(3), Cm(3) and Eu(3) in the alaquat-336-NaOH-EDTA system, Sov. Radiochem. 25 (6) (1983) 697-700 (in Russian). 
  165. Z.K. Karalova, L.M. Rodionova, Z.I. Pyzhova, B.F. Myasoyedov, Investigation of actinium, americium and europium extraction from alkaline solutions with by quaternary ammonium compounds in the presence of complexones, Sov. Radiochem. 21 (3) (1979) 394-399 (in Russian). 
  166. Z.K. Karalova, B.F. Myasoedov, T.I. Bukina, E.A. Lavrinovich, Extraction and separation of actinides and lantanides from alkaline and carbonate solutions, Solv. Extr. Ion Exch. 6 (6) (1988) 1109-1135, https://doi.org/10.1080/07366298808917981. 
  167. A.N. Morozov, E.V. Govor, V.A. Anagnostopoulos, K. Kavallieratos, A.M. Mebel, 1,3,5-Tris-(4-(iso-propyl)- phenylsulfamoylmethyl)benzene as a potential Am(III) extractant: experimental and theoretical study of Sm(III) complexation and extraction and theoretical correlation with Am(III), Mol. Phys. 116 (19e20) (2018) 2719-2727, https://doi.org/10.1080/00268976.2018.1471228. 
  168. E.V. Govor, A.N. Morozov, A.A. Rains, A.M. Mebel, K. Kavallieratos, Spectroscopic and theoretical insights into surprisingly effective Sm(III) extraction from alkaline aqueous media by o-phenylenediamine-derived sulfonamides, Inorg. Chem. 59 (10) (2020) 6884-6894, https://doi.org/10.1021/acs.inorgchem.0c00309. 
  169. X. Zhang, O.W. Adedoyin, M.L. Masferrer Bertoli, E.V. Govor, K. Kavallieratos, Sulfonamide ligand frameworks for Sm(III) extraction from alkaline high-level waste, RAD Conf. Proc. 4 (2020) 173-178, https://doi.org/10.21175/RadProc.2020.35. 
  170. P.S. Lemport, E.I. Goryunov, I.B. Goryunova, E.E. Nifant'ev, A.A. Letyushov, A.M. Safiulina, I.G. Tananaev, B.F. Myasoedov, Synthesis and extraction properties of first representatives of 2-(phoshorylamido)-substituted) 1,8-naphthyridines, Dokl. Chem. 425 (2) (2009) 84-87.  https://doi.org/10.1134/S0012500809040053
  171. C.F. Metz, G.R. Waterbury, The transuranic elements, in: I.M. Kolthoff, P.J. Elving (Eds.), Treatise on Analytical Chemistry vol. 9, Interscience Publishers, New York, 1961, pp. 189-440. Part II. 
  172. V.A. Mikhailov, Analytical Chemistry of Neptunium, Halsted Press, New York, 1973. 
  173. Z.K. Karalova, B.F. Myasoedov, T.V. Bukina, L.M. Rodionova, The use of decylamine for the extraction of actinides and lanthanides from carbonate solutions, Sov. Radiochem. 27 (1) (1985) 41-44 (in Russian). 
  174. E.A. Mezhov, Extraction of Amines and Quaternary Ammonium Bases: Handbook, Energoizdat, Moscow, Russia, 1999 (in Russian). 
  175. B.V. Shevchenko, B.N. Sudarikov, Technology of Uranium, Gosatomizdat, Moscow, USSR, 1961 (in Russian). 
  176. J.D. Navratil, G.H. Thompson, Removal of actinides from selected nuclear fuel reprocessing wastes, Nucl. Technol. 43 (2) (1979) 136-145, https://doi.org/10.13182/NT79-A16305. 
  177. B.A. Moyer, J.F. Birdwell, P.V. Bonnesen, L.H. Delmau, Use of macrocycles in nuclear-waste cleanup: a realworld application of a calixcrown in cesium separation technology, in: K. Gloe (Ed.), Macrocyclic Chemistry, Springer, Dordrecht, 2005, https://doi.org/10.1007/1-4020-3687-6_24. 
  178. B.D. Roach, N.J. Williams, N.C. Duncan, L.H. Delmau, D.L. Lee, J.F. Birdwell, B.A. Moyer, Radiolytic treatment of the Next-Generation caustic-side solvent extraction (NGS) Solvent and its effect on the NGS process, Solv. Extr. Ion Exch. 33 (2) (2015) 134-151, https://doi.org/10.1080/07366299.2014.952531. 
  179. I.V. Smirnov, E.S. Stepanova, M.Yu. Tyupina, N.M. Ivenskaya, S.R. Zaripov, S.R. Kleshnina, S.E. Solov'eva, I.S. Antipin, Extraction of cesium and americium with p-alkylcalix[8]arenes from alkaline solutions, Radiochem 58 (2016) 381-388, https://doi.org/10.1134/S1066362216040068. 
  180. S.R. Izatt, R.T. Hawkins, J.J. Christensen, R.M. Izatt, Cation transport from multiple alkali cation mixtures using a liquid membrane system containing a series of calixarene carriers, J. Am. Chem. Soc. 107 (1) (1985) 63-66, https://doi.org/10.1021/ja00287a012. 
  181. H.L. Delmau, P.V. Bonnesen, N.L. Engle, T.J. Haverlock, F.V. Sloop Jr., B.A. Moyer, Combined extraction of cesium and strontium from alkaline nitrate solutions, Solv. Extr. Ion Exch. 24 (2) (2006) 197-217, https://doi.org/10.1080/07366290500511290. 
  182. H.L. Delmau, D.T. Hobbs, K.N. Raymond, Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media: an Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology, ORNL, 2004. EMSP-81936-2003. 
  183. I.V. Smirnov, I.G. Tananaev, E.S. Stepanova, M.Y. Tyupina, N.M. Ivenskaya, Extraction mixture for extracting americium and europium from carbonite-alkaline solutions, Patent RU2645990 (2018). 
  184. I.V. Smirnov, M.D. Karavan, N.M. Istomina, I.S. Antipin, S.E. Soloveva, S.R. Zaripov, Extraction mixture for extracting cesium and americium from alkaline solutions, Patent RU2731016 (2020). 
  185. W.W. Schulz, Cyclohexanone solvent extraction of 99TcO4 from alkaline nuclear waste solutions, in: International Solvent Extraction Conference, ISEC '80, 1980. Liege, Belgium, September 6-12. 
  186. S. Tribalat, J. Beydon, Isolation of technetium, Trans. Anal. Chim. Acta 8 (1) (1953) 22-28.  https://doi.org/10.1016/S0003-2670(00)87609-6
  187. Z.K. Karalova, E.A. Lavrinovich, B.F. Myasoedov, Separation of technetium from accompanying elements in basic solutions by extraction with triphenyltetrazolium chloride, Sov. Radiochem. 33 (1991) 266-269. 
  188. R. Shanker, K.S. Venkateswarlu, J.J. Shanker, Solvent extraction of technetium and molybdenum by tetraalkylammonium iodides, J. less-common met. 15 (3) (1968) 311-316, https://doi.org/10.1016/0022-5088(68)90190-2. 
  189. D.J. Chaiko, Y. Vojta, M. Takeuchi, Extraction of technetium from simulated Hanford wastes, in: The Eighth Symposium on Separation Science and Technology for Energy Applications, 1993. Knoxville, TN (United States), October 17-21. 
  190. M.G. Jalhoom, Extraction of technetium by crown ethers and cryptands, J. Radioanal. Nucl. Chem. 104 (1986) 131-139, https://doi.org/10.1007/BF02163256. 
  191. B.A. Moyer, R.A. Sachleben, P.V. Bonnesen, Process for extracting technetium from alkaline solutions, Patent US5443731 (1995). 
  192. P.V. Bonnesen, B.A. Moyer, D.J. Presley, V.S. Armstrong, T.J. Haverlock, R.M. Counce, R.A. Sachleben, Alkaline-side Extraction of Technetium from Tank Waste Using Crown Ethers and Other Extractants, Report, ORNL, Oak Ridge, Tennessee, 1996, https://doi.org/10.2172/257317. ORNL/TM-13241. 
  193. G.R. Mahajan, M. Ray, C.V. Karekar, V.K. Rao, P.R. Natarajan, Extraction of plutonium from alkaline solutions by quaternary amine Aliquat-336, in: Radiochemistry and Radiation Chemistry Symposium, 1985. Kanpur, India, December 9-13. 
  194. K. Ueno, A. Saito, Extraction of several elements with trioctylmonomethylammonium chloride, Anal. Chim. Acta 56 (3) (1971) 427-434, https://doi.org/10.1016/S0003-2670(01)80932-6. 
  195. N.D. Mokhine, M. Mathuthu, E. Stassen, Recovery of uranium from residue generated during Mo-99 production, using organic solvent extraction, Phys. Chem. Earth 115 (2020), 102822, https://doi.org/10.1016/j.pce.2019.102822. 
  196. S.I. Stepanov, A.M. Chekmarev, Extraction of Rare Metals by the Salts of Quaternary Ammonium Bases, IzdAT, Moscow, 2004 (in Russian). 
  197. S.I. Stepanov, A.V. Boyarintsev, S.A. Polyakov, A.S. Wolf, A.M. Chekmarev, A.Yu. Tsivadze, Chemistry of the CARBEX process: identification of absorption bands of the ligands in the electronic spectra of aqueous solutions of Na4[UO2(CO3)3], Dokl. Chem. 469 (2016) 209-214, https://doi.org/10.1134/S001250081607003X. 
  198. A.V. Boyarintsev, S.I. Stepanov, A.A. Chekhlov, A.M. Chekmarev, A.Yu. Tsivadze, Chemistry of the CARBEX process: identification of absorption bands of the ligands in the electronic spectra of aqueous solutions of Na4[UO2(O2)(CO3)2], Dokl. Chem. 469 (2) (2016) 227-232, https://doi.org/10.1134/S0012500816080024. 
  199. S.I. Stepanov, A.V. Boyarintsev, A.A. Chekhlov, A.M. Chekmarev, A.Yu. Tsivadze, Chemistry of the CARBEX Process. Identification of absorption bands of the ligands in the electronic spectra of U(VI) extracts with methyltrioctylammonium carbonate, Dokl. Chem. 473 (1) (2017) 63-66, https://doi.org/10.1134/S0012500817030065. 
  200. G. Hongcheng, Z. Maoliang, P. Qixiu, P. Lie, W. Wenqing, The extraction of uranium from carbonate solutions by trialkyl-metylammonium chloride, He Hua Xue Yu Fang She Hua Xue 3 (2) (1981) 88-96 (in Chinese). 
  201. S.I. Stepanov, H.V. So, S. Htun, A.V. Boyarintsev, Extraction of U(VI) peroxide-carbonate complexes from carbonate solutions by methyltrioctylammonium carbonate, in: 3rd International Symposium on Sorption and Extraction, 2010. Vladivostok, Russia, September 20-24, (in Russian). 
  202. I.A. Anisimova, S. Htun, A.V. Boyarintsev, S.I. Stepanov, Re-extraction of U(VI) from MTOA carbonate extracts with uranyl peroxide-carbonate complexes, Prog. Chem. Technol. 25 (7) (2011) 20-23 (in Russian). 
  203. A.V. Boyarintsev, S. Htun, A.V. Goncharova, S.I. Stepanov, K.A. Slavinsky, A.M. Chekmarev, Chemistry of extraction of uranium(VI) peroxide-carbonate complexes from carbonate solutions with quaternary ammonium salts, in: 7th Russian Conference on Radiochemistry, 2012. Dimitrovgrad, October 15-19, (in Russian). 
  204. S.I. Stepanov, H.V. So, S. Htun, A.V. Boyartintsev, A.M. Chekmarev, Solvent extraction of uranium(VI) peroxo-carbonate complexes from carbonate solutions with methyltrioctylammonium carbonate, Dokl. Chem. 452 (2) (2013) 245-249, https://doi.org/10.1134/S0012500813110025. 
  205. S.I. Stepanov, A.V. Boyarintsev, A.V. Turemnov, San Htun, E.G. Il'in, A.M. Chekmarev, A.Yu. Tsivadze, NMR study of U(VI) extraction from carbonate-fluoride solutions with methyltrioctylammonium fluoride, Dokl. Chem. 460 (1) (2015) 17-20, https://doi.org/10.1134/S0012500815010073. 
  206. B.V. Gromov, Introduction to Uranium Chemical Technology, Atomizdat, Moscow, 1978 (in Russian). 
  207. I.I. Chernyaev, Complex Compounds of Uranium, Daniel Davey & Co., Ink., New York, 1966. 
  208. S.I. Stepanov, A.M. Chekmarev, A.V. Boyarintsev, A.Y. Tsivadze, Recent progress in the development of carbonate-alkaline spent nuclear fuel reprocessing methods, in: 8th Russian Conference on Radiochemistry, 2015. Zheleznogorsk, Russia, September 28 - October 2, (in Russian). 
  209. S.I. Stepanov, A.M. Chekmarev, A.V. Boyarintsev, A.Y. Tsivadze, Extraction refining of uranium in the CARBEX process according to laboratory tests, in: 8th Russian Conference on Radiochemistry, 2015. Zheleznogorsk, Russia, September 28 - October 2, (in Russian). 
  210. A.V. Boyarintsev, S.I. Stepanov, A.M. Chekmarev, A.Y. Tsivadze, Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process, Nucl. Eng. Technol. 52 (1) (2020) 109-114, https://doi.org/10.1016/j.net.2019.06.025. 
  211. E.O. Nazarov, A.M. Safiulina, S.I. Stepanov, A.M. Chekmarev, Pu(VI) extraction by methyltrialkylammonium carbonate from carbonate media, Prog. Chem. Technol. 24 (8) (2010) 62-67 (in Russian). 
  212. E.O. Nazarov, A.M. Safiulina, S.I. Stepanov, A.M. Chekmarev, Solvent extraction of plutonium(VI) by quaternary ammonium carbonates from carbonate solutions, in: 4th Russian School of Radiochemistry and Nuclear Technology, 2010. Ozersk, Russia, September 6-10, (in Russian). 
  213. S.I. Stepanov, A.M. Chekmarev, CARBEX application prospects in the reprocessing of FNR spent nuclear fuel, Iss. Nucl. Sci. Technol. Mater. Sci. New Mater. 2 (75) (2013) 108-115 (in Russian). 
  214. S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A.M. Safiulina, I.G. Tananaev, Hen Vin So, A.M. Chekmarev, A.Yu. Civadze, CARBEX process, a new technology of reprocessing of spent nuclear fuel, Russ. J. Gen. Chem. 81 (9) (2011) 1949-1959, https://doi.org/10.1134/S1070363211090404. 
  215. E.S. Palypin, V.V. Nekrasov, L.A. Ivanova, Z.K. Karalova, B.F. Myasoyedov, Extraction of americium and europium from alkali solutions by quaternary ammonium compounds in the presence of alpha-hydroxy-carboxylic acids, J. Anal. Chem. 33 (5) (1978) 878-883 (in Russian). 
  216. Z.K. Karalova, L.M. Rodionova, Z.I. Pyzhova, B.F. Myasoyedov, Actinium and europium extraction by aliquate 336-OH from alkaline solutions in the presence of oxycomplexes, Sov. Radiochem. 22 (1) (1980) 107-110 (in Russian). 
  217. Z.K. Karalova, L.M. Rodionova, B.F. Myasoyedov, Americium and europium extraction by aliquate 336×OH and alkylpyrocatechol from alkaline solutions in the presence of alkylphosphonic complexones, Sov. Radiochem. 24 (2) (1982) 210-213 (in Russian). 
  218. Z.K. Karalova, B.F. Myasoyedov, V.V. Nekrasova, Solvent extraction of elements from alkaline solutions, J. Anal. Chem. 34 (9) (1979) 1834-1840 (in Russian). 
  219. Z.K. Karalova, T.I. Bukina, B.F. Myasoyedov, Extraction of transplutonium elements from alkaline solutions, Sov. Radiochem. 27 (4) (1985) 450-455 (in Russian). 
  220. Z.K. Karalova, T.I. Bukina, B.F. Myasoyedov, Use of alkaline solutions for extraction and separation of elements by extraction chromatography method, Sov. Radiochem. 27 (6) (1985) 751-761 (in Russian). 
  221. B.F. Myasoyedov, Z.K. Karalova, L.A. Fedorov, V.V. Nekrasova, A.V. Karyakin, N.F. Efimova, On extraction mechanism of trivalent actinides and lanthanides with aliquate-336 and alkyl pyrocatechol in alkaline solutions, J. Inorg. Chem. 26 (6) (1981) 1633-1640 (in Russian). 
  222. V.V. Nekrasova, Z.K. Karalova, B.F. Myasoedov, Study of Am and Eu complex behavior in alkaline solutions by the solvent extraction method, Sov. Radiochem. 21 (6) (1979) 805-808 (in Russian). 
  223. V.V. Nekrasova, Z.K. Karalova, B.F. Myasoedov, Extraction of europium macroquantities from alkaline tartrate solutions with aliquate-336, Sov. Radiochem. 22 (4) (1980) 514-516 (in Russian). 
  224. B.F. Myasoyedov, Z.K. Karalova, L.A. Fedorov, L.M. Rodionova, N.I. Grebenshchikov, Effect of complexing ligards on extraction mechanism of lanthanides by aliquate-336 from alkaline solutions, J. Inorg. Chem. 28 (3) (1983) 697-701 (in Russian). 
  225. M.C. Hernandez-Soriano, Environmental Risk Assessment of Soil Contamination, IntechOpen, London, United Kingdom, 2014, https://doi.org/10.5772/57086. 
  226. Technical Reports Series No. 337, Chemical Precipitation Processes for the Treatment of Aqueous Radioactive Waste, IAEA, Vienna, 1992. 
  227. M.K. Purkait, P. Mondal, C.-T. Chang, Treatment of Industrial Effluents: Case Studies, first ed., CRC Press, Boca Raton, FL, USA, 2019 https://doi.org/10.1201/9780429401763. 
  228. Technical Reports Series No. 402, Handling and Processing of Radioactive Waste from Nuclear Applications, IAEA, Vienna, 2001. 
  229. Decontamination and Decommissioning of Nuclear Facilities, Technical Reports Series No. 401, IAEA, Vienna, 2001. 
  230. F. Adenot, T. Advocate, I. Bisel, J.C. Broudic, P. Brun, C. Cau-Dit-Coumes, F. Delage, J.L. Dussossoy, S. Faure, B. Fournel, C. Girold, A. Grandjean, J.Fl. Hollebecque, J. Lacombe, C. Ladirat, F. Lemort, S. Peuget, O. Pinet, S. Poitou, F. Rouppert, P.P. Vistoli, Le traitement et le conditionnement des desechts, Rapport technique, CEA, France, 2005. DTCD/SCD/2005/001. 
  231. T.S. Psareva, O.I. Zakutevsk, V.V. Strelko, Sorption of uranium by titanosilicate ion exchanger, Rep. NAS Ukr (2003) 130-135 (In Russian). 
  232. Z. Lv, H. Wang, C. Chen, S. Yang, L. Chen, A. Alsaedi, T. Hayat, Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent, J. Colloid Interface Sci. 537 (2019) A1-A10.  https://doi.org/10.1016/j.jcis.2018.11.062
  233. J.S. Ren, T. Mu, W. Zhang, S.Y. Yang, Effect of ingredients in waste water on property of ion exchange resin for uranium-contained waste water treatment, Atom. Ene. Sci. Technol. 42 (2008) 38-42.