• Title/Summary/Keyword: radiation protection

Search Result 2,355, Processing Time 0.029 seconds

Discussion of Exposure Evaluation Associated with Extremely Low Frequency-magnetic Field in the Case of Portable Hand-held Fans (휴대용 손 선풍기의 극저주파 자기장 발생 수준 평가와 쟁점 고찰)

  • Park, Dong-Uk;Yi, Seongjin;Kim, So-Youn;Bae, Seo-Youn;Choi, Sangjun;Kim, Won;Min, Sung Hyon;Park, Jihoon;Ahn, Jongju
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.5
    • /
    • pp.480-490
    • /
    • 2018
  • Objective: This study aimed to report the level of extremely low frequency-magnetic field (ELF-MF) emitted by portable hand-held fans (HHF) and to discuss the methodologies for determining the health risk of ELF-MF for HHF products. Method: ELF-MF was monitored at eight locations by distances in the vicinity of HHFs. A total of 13 HHF brands on the market were randomly selected. A portable ELF-MF monitor MDEX II was used to measure the ELF-MF level in the range of 40-800 Hz with a resolution of $0.01{\mu}T$. This study also examined the frequency results of a total of 45 HHF products investigated by the Korean Ministry of Science and ICT (KMSICT). Results: ELF-MF higher than $0.3{\mu}T$ was found to be emitted at a distance of less than 20 cm from 12 HHF. ELF-MF emitted from four products was found to exceed the reference level ($83.3{\mu}T$ based on 60 Hz) recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). KMSIT reported that the principle frequency emitted from the HHFs ranged from 54 Hz to 284 kHz, without the level of LEF-MF. Unscientifically, the KMSICT used the reference level by ICNIRP as the chronic level and concluded that all HHFs are safe with a basis of 1.2-36.0% less than the reference level. Conclusion: The HHF emitted much higher levels of ELF-MF than $0.3-0.4{\mu}T$, which is regarded as the reference level for childhood leukemia. The risk of HHF should be examined in terms of whether they can be used by the general public, including children and pregnant woman.

Anti-melanogenesis and Anti-wrinkle Properties of Korean Native Dendrobium speciosum Ethanol Extract (Dendrobium speciosum 에탄올 추출물의 melanin 생성 억제 효능 및 주름개선 효과)

  • Sim, Mi-Ok;Lee, Hyo-Eun;Jang, Ji-Hun;Jung, Ho-Kyung;Kim, Tae-Muk;Kim, Min-Suk;Jung, Won Seok
    • Korean Journal of Plant Resources
    • /
    • v.29 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • Melanin is produced by melanocytes of the melanoepidermic unit and other cell types. These cells secrete and distribute the melanin pigment, which provides protection from ultraviolet radiation. In this study, the inhibitory activity against tyrosinase and melanin biosynthesis in B16F10 melanoma cells and anti-wrinkling effects on human dermal fibroblasts of Dendrobium speciosum ethanol extract were investigated. The Dendrobium speciosum extract inhibited melanin biosynthesis and tyrosinase activity in a dose-dependent manner in comparison with an untreated control group. Treatment with the Dendrobium speciosum extract suppressed α-MSH-stimulated melanogenesis in B16F10 cells and the dendrite outgrowth of melanocyte/melanoma cells. The α-MSH-induced mRNA expression of tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2) and microphthalmia-associated transcription factor (MITF) was significantly attenuated in a concentration-dependent manner by Dendrobium speciosum treatment. In addition, Dendrobium speciosum treatment increased production of type I procollagen synthesis in human dermal fibroblasts. Dendrobium speciosum ethanol extract exhibited a potent inhibitory effect on melanin biosynthesis, tyrosinase activity and increased procollagen synthesis. These results indicate that Dendrobium speciosum shows promise as an ingredient in cosmeceutical products due to its whitening and anti-wrinkle effects.

Endonuclease G is Upregulated and Required in Testicular Germ Cell Apoptosis after Exposure to 60 Hz at 200 μT

  • Park, Sungman;Kim, Min-Woo;Kim, Ji-Hoon;Lee, Yena;Kim, Min Soo;Lee, Yong-Jun;Kim, Young-Jin;Kim, Hee-Sung;Kim, Yoon-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.142-150
    • /
    • 2015
  • Several reports supported that continuous exposure to 60 Hz magnetic field (MF) induces testicular germ cell apoptosis in vivo. We recently evaluated duration- and dose-dependent effects of continuous exposure to a 60 Hz MF on the testes in mice. BALB/c male mice were exposed to a 60 Hz MF at $100{\mu}T$ for 24 hours a day for 2, 4, 6, or 8 weeks, and at 2, 20 or $200{\mu}T$ for 24 hours a day for 8 weeks. To induce the apoptosis of testicular germ cell in mice, the minimum dose is $20{\mu}T$ at continuous exposure to a 60 Hz MF for 8 weeks, and the minimum duration is 6 weeks at continuous exposure of $100{\mu}T$. Continuous exposure to a 60 Hz MF might affect duration- and dose-dependent biological processes including apoptotic cell death and spermatogenesis in the male reproductive system of mice. The safety guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) indicates that the permissible maximum magnetic flux density for general public exposure is $200{\mu}T$ at 60 Hz EMF (ICNIRP Guidelines, 2010). In the present study, we aimed to examine the expression of pro- and anti-apoptotic genes regulated by the continuous exposure to 60 Hz at $200{\mu}T$ in Sprague-Dawley rats for 20 weeks. The continuous exposure to 60 Hz at $200{\mu}T$ does not affect the body and testicular weight in rats. However, exposure to 60 Hz MF significantly affects testicular germ cell apoptosis and sperm count. Further, the apoptosis-related gene was scrutinized after exposure to 60 Hz at $200{\mu}T$ for 20 weeks. We found that the message level of endonuclease G (EndoG) was greatly increased following the exposure to 60 Hz at $200{\mu}T$ compared with sham control. These data suggested that 60 Hz magnetic field induced testicular germ cell apoptosis through mitochondrial protein Endo G.

A Study on Photon Characteristics Generated from Target of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적에서 발생한 광자 평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.193-201
    • /
    • 2020
  • The purpose of this study is to evaluate the photon characteristics according to the material and thickness of the electrons incidented through a linear accelerator. The computer simulation design is a linear accelerator target consisting of a 2 mm thick tungsten single material and a 1.8 mm and 2.3 mm thick tungsten and copper composite material. In the research method, First, the behavior of primary particles in the target was evaluated by electron fluence and electron energy deposition. Second, photons occurring within the target were evaluated by photon fluence. Finally, the photon angle-energy distribution at a distance of 1 m from the target was evaluated by photon fluence. As a result, first, electrons, which are primary particles, were not released out of the target for electron fluence and energy deposition in the target of a single material and a composite material. Then, electrons were linearly attenuated negatively according to the target thickness. Second, it was found that the composite material target had a higher photon generation than the single material target. This confirmed that the material composition and thickness influences photon production. Finally, photon fluence according to the angular distribution required for shielding analysis was calculated. These results confirmed that the photon generation rate differed depending on the material and thickness of the linear accelerator target. Therefore, this study is necessary for designing and operating a linear accelerator use facility for container security screening that is being introduced in the country. In addition, it is thought that it can be used as basic data for radiation protection.

Anti-Inflammatory Effect of Ixeris dentata on Ultraviolet B-Induced HaCaT Keratinocytes

  • Kim, Sung-Bae;Kang, Ok-Hwa;Keum, Joon-Ho;Mun, Su-Hyun;An, Hyun-Jin;Jung, Hyun-Ju;Hong, Seung-Heon;Jeong, Dong-Myong;Kweon, Kee-Tae;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB) irradiation induces skin damage and inflammation through the secretion of various cytokines, which are immune regulators produced by cells. To prevent the initiation of skin inflammation, keratinocytes that have been irreversibly damaged by radiation must be removed through the apoptotic mechanism. Ixeris dentata (family: Asteraceae) is a perennial medicinal herb indigenous to Korea. It has been used in Korea, China, and Japan to treat in digestion, pneumonia, diabetes, hepatitis, and tumors. To gain insight into the anti-inflammatory effects of I. dentata, we examined its influence on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells), by observing cells that were stimulated with UVB in the presence or absence of I. dentata. In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of mitogen-activated protein kinase (MAPKs). I. dentata inhibited UVBinduced production of the pro-inflammatory cytokine interleukin (IL)-6 in a dose-dependent manner. Further, I. dentata inhibited the UVB-induced expression of cyclooxygenase (COX)-2. Furthermore, I. dentata inhibited the phosphorylation of c-Jun NH2-terminal kinase and p38 MAPKs, suggesting that it inhibits the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression, by blocking MAPK phosphorylation. These results suggest that I. dentate can potentially protect against UVB-induced skin inflammation.

Environment, Health and Safety Offices of the Top 30 Research Universities in the U.S.A. - Focused on the Case of Massachusetts Institute of Technology(MIT) (미국 상위 30개 연구 중심 대학들의 실험실 환경보건안전 담당 부서 - MIT 사례를 중심으로)

  • Ahn, Kwangseog;Kang, Dongmug;Shin, Yong Chul;Jun, Young-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.192-202
    • /
    • 2007
  • Objectives: The objectives of this research are to examine the missions, organization, and programs of the environmental, health and safety(EHS) offices of the major research universities in the U.S.A., particularly the case of Massachusetts Institute of Technology(MIT) EHS Office, and to suggest ways to address the EHS issues of the universities and research institutes in South Korea. Methods: The top 30 research universities in the U.S.A. were selected by the total amounts of research funds they annually received. The web sites of the 30 universities were searched to identify the names of the departments that address environment, health, and/or safety related issues, the missions of those departments, the major programs of those departments, and the number of staff in those departments. Also, a case study was conducted for the Environment Health and Safety Management System and the Environment, Health and Safety Office of the MIT, using literature and web searches and a meeting with the Director of the MIT Environment, Health and Safety Office. Results: All the top 30 research universities in the U.S.A. had designated departments that dealt with EHS issues. Most of them were by the name of or similar to environmental, health and safety. The mission statements of those departments were mostly about improving the safety and health of their community members, improving the environment, and complying to EHS regulations. Most of those departments had an environmental management program, industrial hygiene program, radiation protection program, safety program, and biosafety program as their major programs. The components of the environment, health and safety management system(EHS-MS) of the MIT were examined in detail. In contrast, not many universities in South Korea had designated departments that dealt specifically with EHS issues. Also, the number of fulltime staff for EHS was only 1-2 in most of the Korean universities and their work duties included only general safety, while neglecting other health/environment related issues. Conclusions: Well organized and functioning environmental, health and safety offices were present in all of the top 30 research universities in the U.S.A., whereas similar organizations of the universities in South Korea were virtually non-existent and/or had very limited EHS activities. Therefore, in order to reduce potential risks of accidents and health problems in the Korean universities and research institutions, well established and functioning EHS-MSs and EHS offices are warranted. The case of the EHS-MS and EHS Office in the MIT demonstrate a successful case to follow.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Application and Analysis of the Steady State Spectral Wave Model Take into Account the Effect of Current (흐름의 영향을 고려한 정상상태 스펙트럼 파랑모델의 적용 및 분석)

  • Lee, Hak-Seung;Lee, Joong-Woo;Yang, Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.97-104
    • /
    • 2004
  • Introduction of wave model, take into account the effect of tide, wind and wave induced currents at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster protection problems. As the steady state spectral wave model could simulate depth induced wave shoaling and refraction, current induced refraction effect, steepness induced wave breaking, diffraction, wind wave growth, wave-wave interaction, and wave-current interaction that redistribute energy, this would support and compensate the gap in the real field of design where other wave models could not deal and cause wrong estimation. In this study, for better understanding and analysis of wave transformation process, we applied the spectral wave model to the large coastal waters near Gaduck Island where the Busan new port construction project is going on. We also compared the simulation results with the calculatea from the existing model. From such a trial of this study, we hope that broader and safer use of the spectral model in the area of port design and disaster prevention system come through in near future.

X-ray properties measurement of Flat panel Digital X-ray gas detector (평판형 디지털 엑스레이 가스 검출기의 엑스선 특성 측정기술에 관한 연구)

  • Yoon, Min-Seok;Cho, Sung-Ho;Oh, Kyung-Min;Jung, Suk-Hee;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The Recently, large area matrix-addressed image detectors are investigated for X-ray imaging with medical diagnostic and other applications. In this paper, a new flat panel gas detector for diagnostic X-ray imaging is proposed, and its characteristics are investigated. The research of flat panel gas detector is not exist at all. Because of difficulty to inject gas against to atmospheric pressure. So almost gas detector made by chamber shape. We made flat panel sample by display technique. (ex: PDP, Fed, etc.) The experimental measurements, the transparent electrodes, dielectric layer, and the MgO protection layer were formed in front glass. And, the X-ray phosphor layer and address electrodes are formed in the rare glass. The dark current, the x-ray sensitivity and linearity as a function of electric field were measured to investigate the electrical properties. From the results, the stabilized dark current density and the significant x-ray sensitivity were obtained. And the good linearity as a function of exposure dose was showed in wide diagnostic energy range. These results means that the passive matrix-addressed flat panel gas detector can be used for digital x-ray imaging.

  • PDF

A Study on the Presentation of Entrance Surface Dose Model using Semiconductor Dosimeter, General Dosimeter, Glass Dosimeter: Focusing on Comparative Analysis of Effective Dose and Disease Risk through PCXMC 2.0 based on Monte Carlo Simulation (반도체 선량계, 일반 선량계, 유리 선량계를 이용한 입사표면선량 모델 제시에 관한 연구: 몬테카를로 시뮬레이션 기반의 PCXMC 2.0을 통한 유효선량과 발병 위험도의 비교분석을 중심으로)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • One of the purposes of radiation protection is to minimize stochastic effects. PCXMC 2.0 is a Monte Carlo Simulation based program and makes it possible to predict effective dose and the probability of cancer development through entrance surface dose. Therefore, it is especially important to measure entrance surface dose through dosimeter. The purpose of this study is to measure entrance surface dose through semiconductor dosimeter, general dosimeter, glass dosimeter, and to compare and analyze the effective dose and probability of disease of critical organs. As an experimental method, the entrance surface dose of skull, chest, abdomen was measured per dosimeter and the effective dose and the probability of cancer development of critical organs per area was evaluated by PCXMC 2.0. As a result, the entrance surface dose per area was different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter even under the same condition. Base on this analysis, the effective dose and probability of developing cancer of critical organs were also different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter. In conclusion, it was found that the effective dose and the risk of diseases differ according to the dosimeter used, even under the same conditions, and through this study it was found that it is important to present an accurate entrance surface dose model according to each dosimeter.