• Title/Summary/Keyword: radiation attenuation

Search Result 265, Processing Time 0.031 seconds

Determination of Attenuation Collection Methods According to the Type of Radioactive Waste Drums (방사성폐기물드럼 종류별 감쇠보정방법의 결정)

  • Kwak, Sang-Soo;Choi, Byung-I1;Yoon, Suk-Jung;Lee, Ik-Whan;Kang, Duck-Won;Sung, Ki-Bang
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.309-317
    • /
    • 1997
  • The measured radioactivity of gamma-emitting radionuclides in each radioactive waste drum using the non-destructive waste assay method is underestimated than real radioactivity in radioactive waste drum because the gamma-rays are attenuated within the medium. Therefore, the measured radioactivity should be corrected for the attenuation of gamma-rays. For the correction of the attenuation of gamma-rays, the attenuation correction method should be applied differently by considering the distribution and density of medium in radioactive wastes drum generated from nuclear power plants. In this study, the model drums were fabricated for simulating five types of radioactive waste drums generated from nuclear power plant and the optimum methods of the attenuation correction were experimentally determined to analyze the activity of radionuclides in the waste drum accurately using the segmented gamma scanning system. With the determination of the attenuation correction methods from the experimental results the transmission method and the average density method for the miscellaneous waste drum, the transmission method and the differential peak absorption method for the shielded miscellaneous waste drum were used to measure the density of medium in waste drums. Also, the average density method and the differential peak absorption method for the spent resin drum, the paraffin solidified drum, and the spent filter drum were used.

  • PDF

The evaluation of usefulness of the newly manufactured immobilization device (치료보조기구의 제작 및 유용성 평가)

  • Seo Seok Jin;Kim Chan Yoeng;Lee Je Hee;Park Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • Purpose : To evaluate the usefulness of the handmade patient immobilization device and to report the clinical results of it. Materials and methods : We made two fusion images and analyzed those images. One image is made with diagnostic MR image and CT image, the other with therapeutic planning MR image and CT image. With open head holder, we measured the skin dose and attenuation dose. Also, we made the planning CT couch plate with acrylic plate and styrofoam and compared artifact. Results : We could get more accurate fusion image when we use MR head holder(within 2mm error). The skin dose was reduced 2 times and the attenuation dose was reduced more than $20\%$ when open head holder used. The planning CT couch plate was more convenient than conventional board and reduced artifact remarkably. Conclusion : We could verify the localization point in the MR image which is taken with MR head holder. So we could fuse the image more accurately. The same method could be applied to PET and US image, if the alike immobilization device used. With open head holder, the skin dose and the attenuation dose was reduced. And those above devices could substitute for expensive foreign device, if those are manufactured adequately.

  • PDF

Beta particle energy spectra shift due to self-attenuation effects in environmental sources

  • Alton, Thomas Theakston;Monk, Stephen David;Cheneler, David
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1483-1488
    • /
    • 2017
  • In order to predict and control the environmental and health impacts of ionizing radiation in environmental sources such as groundwater, it is necessary to identify the radionuclides present. Beta-emitting radionuclides are frequently identified by measuring their characteristic energy spectra. The present work shows that self-attenuation effects from volume sources result in a geometry-dependent shift in the characteristic spectra, which needs to be taken into account in order to correctly identify the radionuclides present. These effects are shown to be compounded due to the subsequent shift in the photon spectra produced by the detector, in this case an inorganic solid scintillator ($CaF_2:Eu$) monitored using a silicon photomultiplier. Using tritiated water as an environmentally relevant, and notoriously difficult to monitor case study, analytical predictions for the shift in the energy spectra as a function of depth of source have been derived. These predictions have been validated using Geant4 simulations and experimental results measured using bespoke instrumentation.

Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines

  • Jo, Jeong Sang;Jeon, Tae-In
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.560-565
    • /
    • 2015
  • We report efficient direct coupling of THz dipole antenna pulses onto air spaced two-wire transmission lines and Teflon covered two-wire lines. The air spaced two-wire lines show TEM mode propagation with very small group velocity dispersion (GVD) and relatively low attenuation. The Teflon covered two-wire lines showed comparatively much higher attenuation and GVD. However, the Teflon covered two-wire lines show a very good guiding property when the lines are curved. Although the lines are circled only 5.0 cm in diameter, there is no additional attenuation compared to straight the lines.

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal;Mohamed Amin;S.H. Nagib;Hassan Youssef;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.499-516
    • /
    • 2023
  • To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

MONTE CARLO SIMULATION FOR CORRECTION OF IONIZATION CHAMBER WALL

  • Kurosawa, Tadahiro;Takata, Nobuhisa;Koyama, Yasuji
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.271-273
    • /
    • 2001
  • In precise measurement of air kerma with cavity ionization chambers, the effect of wall attenuation and scatter are corrected by Kwall and that of nonuniformity by Knu. Using the EGS4 code, we calculated these two correction factors. Correction factors calculated for two different-sized cylindrical ionization chamber differ by up to 0.7% from those obtained by measurements.

  • PDF

Determination of some useful radiation interaction parameters for waste foods

  • Akman, F.;Gecibesler, I.H.;Sayyed, M.I.;Tijani, S.A.;Tufekci, A.R.;Demirtas, I.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.944-949
    • /
    • 2018
  • The mass attenuation coefficients (${\mu}/{\rho}$) of food waste samples (pomegranate peel, acorn cap, lemon peel, mandarin peel, pumpkin peel, grape peel, orange peel, pineapple peel, acorn peel and grape stalk) have been measured employing a Si(Li) detector at 13.92, 17.75, 20.78, 26.34 and 59.54 keV. Also, the theoretical values of the mass attenuation coefficients have been evaluated utilizing mixture rule from WinXCOM program. The results showed that the lemon peel has the highest values of ${\mu}/{\rho}$ among the selected samples. From the obtained mass attenuation coefficients, we determined some absorption parameters such as effective atomic number ($Z_{eff}$), electron density ($N_E$) and molar extinction coefficient (${\varepsilon}$). It was found that the $Z_{eff}$ values of all food wastes lie within the range of 4.034-7.595, whereas the $N_E$ of the studied food wastes was found to be in the range of $0.301-1.720{\times}10^{25}$ (electrons/g) for present energy region.

Determination of the Equivalent Energy of a 6 MV X-ray Beam (6 MV X-선 빔의 등가에너지 결정)

  • Kim, Jong-Eon;Park, Byung-Do
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.591-596
    • /
    • 2016
  • The purpose of this study is to determine the equivalent energy of a 6MV X-ray beam in the experiment. The half-value layer (HVL) of lead for the 6 MV X-ray beam was measured using an ionization chamber. The linear attenuation coefficients were calculated with HVL. And, the mass attenuation coefficient was obtained by dividing the linear attenuation coefficient by the density of lead. The equivalent energy of mass attenuation coefficient was determined using the photon energy versus mass attenuation coefficient data of lead given by National Institute of Standards and Technology (NIST). In conclusion, the equivalent energy of the 6 MV X-ray beam was determined to be 1.61 MeV. This equivalent energy was determined to be about 30% lower than reported by Reft. The reason is presumed to be due to the presence of an air cavity between the lead attenuators.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF