DOI QR코드

DOI QR Code

Determination of some useful radiation interaction parameters for waste foods

  • Akman, F. (Bingol University, Vocational School of Technical Sciences, Department of Electronic Communication Technology) ;
  • Gecibesler, I.H. (Bingol University, Health Faculty, Laboratory of Natural Product Research) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, University of Tabuk) ;
  • Tijani, S.A. (Department of Physics, Faculty of Science, King Abdulaziz University) ;
  • Tufekci, A.R. (Cankiri Karatekin University, Faculty of Science, Department of Chemistry) ;
  • Demirtas, I. (Cankiri Karatekin University, Faculty of Science, Department of Chemistry)
  • 투고 : 2018.03.09
  • 심사 : 2018.05.27
  • 발행 : 2018.08.25

초록

The mass attenuation coefficients (${\mu}/{\rho}$) of food waste samples (pomegranate peel, acorn cap, lemon peel, mandarin peel, pumpkin peel, grape peel, orange peel, pineapple peel, acorn peel and grape stalk) have been measured employing a Si(Li) detector at 13.92, 17.75, 20.78, 26.34 and 59.54 keV. Also, the theoretical values of the mass attenuation coefficients have been evaluated utilizing mixture rule from WinXCOM program. The results showed that the lemon peel has the highest values of ${\mu}/{\rho}$ among the selected samples. From the obtained mass attenuation coefficients, we determined some absorption parameters such as effective atomic number ($Z_{eff}$), electron density ($N_E$) and molar extinction coefficient (${\varepsilon}$). It was found that the $Z_{eff}$ values of all food wastes lie within the range of 4.034-7.595, whereas the $N_E$ of the studied food wastes was found to be in the range of $0.301-1.720{\times}10^{25}$ (electrons/g) for present energy region.

키워드

참고문헌

  1. G. Laufenberg, B. Kunz, M. Nystroem, Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations, Bioresour. Technol 87 (2) (2003) 167-198. https://doi.org/10.1016/S0960-8524(02)00167-0
  2. J. Parfitt, M. Barthel, S. Macnaughton, Food waste within food supply chains: quantification and potential for change to 2050, Philos. Trans. R. Soc. B 365 (1554) (2010) 3065-3081. https://doi.org/10.1098/rstb.2010.0126
  3. H.K. Biesalski, L.O. Dragsted, I. Elmadfa, R. Grossklaus, M. Muller, D. Schrenk, et al., Bioactive compounds: definition and assessment of activity, Nutrition 25 (11-12) (2009) 1202-1205. https://doi.org/10.1016/j.nut.2009.04.023
  4. J.A.M. Gondim, M.D.F.V. Moura, A.S. Dantas, R.L.S. Medeiros, K.M. Santos, Centesimal composition and minerals in peels of fruits, Food Sci. Technol. 25 (4) (2005) 825-827. https://doi.org/10.1590/S0101-20612005000400032
  5. M. Russo, I. Bonaccorsi, G. Torre, M. Saro, P. Dugo, L. Mondello, Underestimated sources of flavonoids, limonoids and dietary fibre: availability in lemon's by-products, J. Funct. Food 9 (2014) 18-26. https://doi.org/10.1016/j.jff.2014.04.004
  6. E.D. Caldas, L. Machado, Cadmium, mercury and lead in medicinal herbs in Brazil, Food Chem. Toxicol. 42 (4) (2004) 599-603. https://doi.org/10.1016/j.fct.2003.11.004
  7. A.M.O. Ajasa, M.O. Bello, A.O. Ibrahim, I.A. Ogunwande, N.O. Olawore, Heavy trace metal sand macro nutrients status in herbal plants of Nigeria, Food Chem. 85 (1) (2004) 67-71. https://doi.org/10.1016/j.foodchem.2003.06.004
  8. E.I. Obiajunwa, A.C. Adebajo, O.R. Omobuwajo, Essential and trace element contents of some Nigerian medicinal plants, J. Radioanal. Nucl. Chem. 252 (3) (2002) 473-476. https://doi.org/10.1023/A:1015838300859
  9. M.J. Salvador, D.A. Dias, S. Moreira, O.L.A.D. Zucchi, Analysis of medicinal plants and crude extracts by synchrotron radiation total reflection X-ray fluorescence, J. Trace Microprobe Tech. 21 (2) (2003) 377-388. https://doi.org/10.1081/TMA-120020272
  10. Y. Sefor-Armah, B.J.B. Nyarko, E.H.K. Akaho, A.W.K. Kyere, S. Osae, K. Oppong- Boachie, et al., Activation analysis of some essential elements in five medicinal plants used in Ghana, J. Radioanal. Nucl. Chem. 250 (1) (2001) 173-176. https://doi.org/10.1023/A:1013211819951
  11. V. Trunova, A. Sidorina, V. Kriventsov, Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV, Appl. Radiat. Isotope. 95 (2015) 48-52. https://doi.org/10.1016/j.apradiso.2014.09.017
  12. R.B. Morabad, B.R. Kerur, Mass attenuation coefficients of X-rays in different medicinal plants, Appl. Radiat. Isotope. 68 (2010) 271-274. https://doi.org/10.1016/j.apradiso.2009.10.033
  13. S.S. Teerthe, B.R. Kerur, X-ray mass attenuation coefficient of medicinal plant using different energies 32.890 keV to 13.596 keV, Mater. Today Proc. 3 (10) (2016) 3925-3929. https://doi.org/10.1016/j.matpr.2016.11.050
  14. E.T. Tousi, S. Bauk, R. Hashim, M.S. Jaafar, A. Abuarra, K.S.A. Aldroobi, et al., Measurement of mass attenuation coefficients of EremuruseRhizophoraspp. particle boards for X-ray in the 16.63-25.30 keV energy range, Radiat. Phys. Chem. 103 (2014) 119-125. https://doi.org/10.1016/j.radphyschem.2014.03.011
  15. J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients from keV to 20MeV for Elements Z=1 to 92, NIST (IR) Report no. 5432, 1995.
  16. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (17) (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0
  17. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCOM- a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  18. F. Akman, R. Durak, M.R. Kacal, F. Bezgin, Study of absorption parameters around the K edge for selected compounds of Gd, X-ray Spectrom. 45 (2016) 103-110. https://doi.org/10.1002/xrs.2676
  19. F. Akman, R. Durak, M.F. Turhan, M.R. Kacal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, Appl. Radiat. Isotope. 101 (2015) 107-113. https://doi.org/10.1016/j.apradiso.2015.04.001
  20. F. Akman, M.R. Kaçal, F. Akman, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides, Can. J. Phys. 95 (10) (2017) 1005-1011. https://doi.org/10.1139/cjp-2016-0811
  21. M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for borotellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem. 130 (2017) 335-342. https://doi.org/10.1016/j.radphyschem.2016.09.019
  22. K. Singh, L. Gerward, Molar extinction coefficients for describing gamma-ray attenuation in solutions, Radiat. Phys. Chem. 71 (2004) 659-660. https://doi.org/10.1016/j.radphyschem.2004.04.043
  23. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (5) (2016) 1230-1236. https://doi.org/10.1016/j.net.2016.04.001

피인용 문헌

  1. Radiation shielding parameters of BaO-Nb2O5-P2O5 glass system using MCNP5 code and XCOM software vol.5, pp.11, 2018, https://doi.org/10.1088/2053-1591/aaddc7
  2. Stuctural, optical and radiation shielding properties of zinc boro-tellurite alumina glasses vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2329-3
  3. Investigation of radiation shielding properties for some ceramics vol.107, pp.2, 2019, https://doi.org/10.1515/ract-2018-3030
  4. Radiation protective characteristics of some selected tungstates vol.107, pp.4, 2018, https://doi.org/10.1515/ract-2018-3062
  5. Experimental investigation of photon attenuation parameters for different binary alloys vol.107, pp.4, 2018, https://doi.org/10.1515/ract-2018-3079
  6. The use of isophthalic-bismuth polymer composites as radiation shielding barriers in nuclear medicine vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab0578
  7. Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code vol.13, pp.None, 2018, https://doi.org/10.1016/j.rinp.2019.102199
  8. Er2O3 effects on photon and neutron shielding properties of TeO2-Li2O-ZnO-Nb2O5 glass system vol.13, pp.None, 2019, https://doi.org/10.1016/j.rinp.2019.102277
  9. Structural, optical, and shielding investigations of TeO2-GeO2-ZnO-Li2O-Bi2O3 glass system for radiation protection applications vol.125, pp.6, 2018, https://doi.org/10.1007/s00339-019-2709-3
  10. Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program vol.125, pp.6, 2018, https://doi.org/10.1007/s00339-019-2739-x
  11. Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system vol.107, pp.6, 2018, https://doi.org/10.1515/ract-2018-3058
  12. Gamma radiation attenuation properties of tellurite glasses: A comparative study vol.51, pp.8, 2018, https://doi.org/10.1016/j.net.2019.06.014
  13. Investigation of some radiation interaction parameters for bacteria isolated from the soil in the low energy region vol.98, pp.3, 2018, https://doi.org/10.1139/cjp-2018-0467
  14. Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite vol.95, pp.8, 2020, https://doi.org/10.1088/1402-4896/ab9a6e
  15. An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations vol.53, pp.6, 2021, https://doi.org/10.1016/j.net.2020.12.023
  16. Synthesis of different (RE)BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation vol.276, pp.None, 2022, https://doi.org/10.1016/j.matchemphys.2021.125412
  17. Gamma radiation shielding performance of CuxAg(1-x)-alloys: Experimental, theoretical and simulation results vol.143, pp.None, 2018, https://doi.org/10.1016/j.pnucene.2021.104036