Browse > Article
http://dx.doi.org/10.1016/j.net.2018.05.007

Determination of some useful radiation interaction parameters for waste foods  

Akman, F. (Bingol University, Vocational School of Technical Sciences, Department of Electronic Communication Technology)
Gecibesler, I.H. (Bingol University, Health Faculty, Laboratory of Natural Product Research)
Sayyed, M.I. (Department of Physics, Faculty of Science, University of Tabuk)
Tijani, S.A. (Department of Physics, Faculty of Science, King Abdulaziz University)
Tufekci, A.R. (Cankiri Karatekin University, Faculty of Science, Department of Chemistry)
Demirtas, I. (Cankiri Karatekin University, Faculty of Science, Department of Chemistry)
Publication Information
Nuclear Engineering and Technology / v.50, no.6, 2018 , pp. 944-949 More about this Journal
Abstract
The mass attenuation coefficients (${\mu}/{\rho}$) of food waste samples (pomegranate peel, acorn cap, lemon peel, mandarin peel, pumpkin peel, grape peel, orange peel, pineapple peel, acorn peel and grape stalk) have been measured employing a Si(Li) detector at 13.92, 17.75, 20.78, 26.34 and 59.54 keV. Also, the theoretical values of the mass attenuation coefficients have been evaluated utilizing mixture rule from WinXCOM program. The results showed that the lemon peel has the highest values of ${\mu}/{\rho}$ among the selected samples. From the obtained mass attenuation coefficients, we determined some absorption parameters such as effective atomic number ($Z_{eff}$), electron density ($N_E$) and molar extinction coefficient (${\varepsilon}$). It was found that the $Z_{eff}$ values of all food wastes lie within the range of 4.034-7.595, whereas the $N_E$ of the studied food wastes was found to be in the range of $0.301-1.720{\times}10^{25}$ (electrons/g) for present energy region.
Keywords
Food waste; Photon; Mass attenuation coefficient; Effective atomic number; Molar extinction coefficient;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Laufenberg, B. Kunz, M. Nystroem, Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations, Bioresour. Technol 87 (2) (2003) 167-198.   DOI
2 J. Parfitt, M. Barthel, S. Macnaughton, Food waste within food supply chains: quantification and potential for change to 2050, Philos. Trans. R. Soc. B 365 (1554) (2010) 3065-3081.   DOI
3 H.K. Biesalski, L.O. Dragsted, I. Elmadfa, R. Grossklaus, M. Muller, D. Schrenk, et al., Bioactive compounds: definition and assessment of activity, Nutrition 25 (11-12) (2009) 1202-1205.   DOI
4 J.A.M. Gondim, M.D.F.V. Moura, A.S. Dantas, R.L.S. Medeiros, K.M. Santos, Centesimal composition and minerals in peels of fruits, Food Sci. Technol. 25 (4) (2005) 825-827.   DOI
5 M. Russo, I. Bonaccorsi, G. Torre, M. Saro, P. Dugo, L. Mondello, Underestimated sources of flavonoids, limonoids and dietary fibre: availability in lemon's by-products, J. Funct. Food 9 (2014) 18-26.   DOI
6 E.D. Caldas, L. Machado, Cadmium, mercury and lead in medicinal herbs in Brazil, Food Chem. Toxicol. 42 (4) (2004) 599-603.   DOI
7 A.M.O. Ajasa, M.O. Bello, A.O. Ibrahim, I.A. Ogunwande, N.O. Olawore, Heavy trace metal sand macro nutrients status in herbal plants of Nigeria, Food Chem. 85 (1) (2004) 67-71.   DOI
8 E.I. Obiajunwa, A.C. Adebajo, O.R. Omobuwajo, Essential and trace element contents of some Nigerian medicinal plants, J. Radioanal. Nucl. Chem. 252 (3) (2002) 473-476.   DOI
9 M.J. Salvador, D.A. Dias, S. Moreira, O.L.A.D. Zucchi, Analysis of medicinal plants and crude extracts by synchrotron radiation total reflection X-ray fluorescence, J. Trace Microprobe Tech. 21 (2) (2003) 377-388.   DOI
10 Y. Sefor-Armah, B.J.B. Nyarko, E.H.K. Akaho, A.W.K. Kyere, S. Osae, K. Oppong- Boachie, et al., Activation analysis of some essential elements in five medicinal plants used in Ghana, J. Radioanal. Nucl. Chem. 250 (1) (2001) 173-176.   DOI
11 V. Trunova, A. Sidorina, V. Kriventsov, Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV, Appl. Radiat. Isotope. 95 (2015) 48-52.   DOI
12 R.B. Morabad, B.R. Kerur, Mass attenuation coefficients of X-rays in different medicinal plants, Appl. Radiat. Isotope. 68 (2010) 271-274.   DOI
13 S.S. Teerthe, B.R. Kerur, X-ray mass attenuation coefficient of medicinal plant using different energies 32.890 keV to 13.596 keV, Mater. Today Proc. 3 (10) (2016) 3925-3929.   DOI
14 E.T. Tousi, S. Bauk, R. Hashim, M.S. Jaafar, A. Abuarra, K.S.A. Aldroobi, et al., Measurement of mass attenuation coefficients of EremuruseRhizophoraspp. particle boards for X-ray in the 16.63-25.30 keV energy range, Radiat. Phys. Chem. 103 (2014) 119-125.   DOI
15 J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients from keV to 20MeV for Elements Z=1 to 92, NIST (IR) Report no. 5432, 1995.
16 F. Akman, M.R. Kaçal, F. Akman, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides, Can. J. Phys. 95 (10) (2017) 1005-1011.   DOI
17 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCOM- a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654.   DOI
18 F. Akman, R. Durak, M.R. Kacal, F. Bezgin, Study of absorption parameters around the K edge for selected compounds of Gd, X-ray Spectrom. 45 (2016) 103-110.   DOI
19 F. Akman, R. Durak, M.F. Turhan, M.R. Kacal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, Appl. Radiat. Isotope. 101 (2015) 107-113.   DOI
20 M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for borotellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem. 130 (2017) 335-342.   DOI
21 K. Singh, L. Gerward, Molar extinction coefficients for describing gamma-ray attenuation in solutions, Radiat. Phys. Chem. 71 (2004) 659-660.   DOI
22 H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (5) (2016) 1230-1236.   DOI
23 I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (17) (1997) 1389-1401.   DOI