Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.6.560

Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines  

Jo, Jeong Sang (Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research Institute)
Jeon, Tae-In (Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.6, 2015 , pp. 560-565 More about this Journal
Abstract
We report efficient direct coupling of THz dipole antenna pulses onto air spaced two-wire transmission lines and Teflon covered two-wire lines. The air spaced two-wire lines show TEM mode propagation with very small group velocity dispersion (GVD) and relatively low attenuation. The Teflon covered two-wire lines showed comparatively much higher attenuation and GVD. However, the Teflon covered two-wire lines show a very good guiding property when the lines are curved. Although the lines are circled only 5.0 cm in diameter, there is no additional attenuation compared to straight the lines.
Keywords
Terahertz; Waveguides; Guiding property; Propagation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz bandwidth chip to chip electrical interconnect, characterized with ultrafast optoelectronics,” IEEE Trans. THz Sci. Technol. 3, 453-460 (2013).   DOI
2 M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506-233508 (2009).   DOI
3 T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904-161906 (2005).   DOI
4 K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).   DOI
5 T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092-6094 (2004).   DOI
6 R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846-848 (2001).   DOI
7 R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultra-wideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431-1433 (1999).   DOI
8 M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088-17101 (2009).   DOI
9 Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, and T.-I. Jeon, “Coupling properties of a conical tungsten-wire waveguide in the terahertz frequency range,” J. Korean Phys. Soc. 53, 584-589 (2008).   DOI
10 D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by THz time-domain spectroscopy,” IEEE J. Select. Topics Quantum Electron. 6, 1122-1135 (2000).   DOI
11 M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751-753 (1986).   DOI
12 F. J. Lofy and T. K. Ishii, “Mode of millimeter wave two-wire surface wave transmission line fields,” Proc. IEEE 53, 1652-1653 (1965).   DOI
13 H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18, 7415-7420 (2010).   DOI
14 G. Goubau, “Open wire lines,” IRE Trans. on microwave Theory and Techniques MTT-4, 197-200 (1956).
15 P. Tannouri, M. Peccianti, P. L. Lavertu, F. Vidal, and R. Morandotti, “Quasi-TEM mode propagation in twin-wire THz waveguides,” Chinese Opt. Lett. 9, 110013-110016 (2011).   DOI
16 H. Pahlevaninezhad and T. E. Darcie, “Coupling of terahertz waves to a two-wire waveguide,” Opt. Express 18, 22614-22624 (2010).   DOI
17 S. Ramo, J. R. Whinnery, and T. van-Duzer, Fields and Waves in Communication Electronics, 3rd ed. (John Wiley & Sons, Inc., New York, USA, 1993).