• 제목/요약/키워드: rRNA processing protein

검색결과 14건 처리시간 0.032초

SUMO pathway is required for ribosome biogenesis

  • Hong-Yeoul, Ryu
    • BMB Reports
    • /
    • 제55권11호
    • /
    • pp.535-540
    • /
    • 2022
  • Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis.

Modulation of autophagy by miRNAs

  • Kim, Yunha;Lee, Junghee;Ryu, Hoon
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.371-372
    • /
    • 2015
  • MicroRNAs (miRNAs) can regulate the expression of genes that are involved in multiple cellular pathways. However, their targets and mechanism of action associated with the autophagy pathway are not fully investigated yet. EWSR1 (EWS RNA-Binding Protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and plays roles in numerous cellular processes. Recently, our group has shown that EWSR1 deficiency leads to developmental failure and accelerated senescence via processing of miRNAs, but its role in the regulation of autophagy remains elusive. In this context, we further investigated and found that EWSR1 deficiency triggers the activation of the DROSHA-mediated microprocessor complex and increases the levels of miR125a and miR351, which directly target Uvrag. Interestingly, the miR125a- and miR351-targeted reduction of Uvrag led to the inhibition of autophagy in both ewsr1 knockout (KO) MEFs and ewsr1 KO mice. In summary, our study demonstrates that EWSR1 is associated with the posttranscriptional regulation of Uvrag via miRNA processing. The regulation of autophagy pathway in miRNAs-Uvrag-dependent manner provides a novel mechanism of EWSR1 deficiency-related cellular dysfunction. [BMB Reports 2015; 48(7): 371-372]

Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI;KIM JONG-MYUNG;YEOM JI-HYUN;KIM HYUN-LI;GO HA-YOUNG;SHIN EUN-KYOUNG;LEE KANGSEOK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1100-1105
    • /
    • 2005
  • Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.

Kinesin-I과 직접 결합하는 STAR RNA 결합 단백질인 SAM68, SLM-1과 SLM-2의 규명 (The STAR RNA Binding Proteins SAM68, SLM-1 and SLM-2 Interact with Kinesin-I)

  • 석대현
    • 생명과학회지
    • /
    • 제21권9호
    • /
    • pp.1226-1233
    • /
    • 2011
  • 키네신은 신경세포에서 미세소관 위를 따라 소포들을 운반하는 분자 motor 단백질로 4개의 단백질로 구성되어있다. 신경세포내에서 발현하는 KIF5C가 세포 내에서 어떤 특정소포를 이동시키는가는 신경세포성장에서 중요문제이다. 이에 본연구는 KIF5C와 결합하는 단백질을 동정하기 위하여 효모 two-hybrid 방법을 사용하여 KIF5C와 특이적으로 결합하는 $\underline{S}$am68-$\underline{l}$ike $\underline{m}$ammalian protein 2 (SLM-2)을 확인하였다. $\underline{S}$ignal $\underline{T}$ransducers and $\underline{A}$ctivators of $\underline{R}$NA (STAR) family의 한 종류이며 RNA processing에 관여하는 RNA 결합단백질인 SLM-2는 KIF5s의 C-말단과 결합하며, 또한 SLM-2의 C-말단은 KIF5s와 결합하는데 필수영역이였다. 이러한 단백질간의 결합은 Glutathione S-transferase (GST) pull-down assay를 통하여 SAM68, SLM-1, SLM-2은 특이적으로 Kinesin-I과 결합함을 확인하였으며, SAM68의 항체로 면역침강한 결과 KIF5s와 mRNA는 같이 침강하였다. 신경 세포의 말단에는 돌기형성에 필요한 단백질들의 주형인 mRNA가 다수 존재하며, 이러한 mRNA는 세포의 중앙에서 세포의 말단쪽으로 이동하여야 하는데, 이번 연구 결과는 Kinesin-I이 특이적으로 mRNA을 운반할 것으로 예상된다.

A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus

  • Minji Kim;Song Hee Lee;Junhyun Jeon
    • Mycobiology
    • /
    • 제51권5호
    • /
    • pp.273-280
    • /
    • 2023
  • The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of DMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

Characterization of Beef Transcripts Correlated with Tenderness and Moisture

  • Kee, Hyun-Jung;Park, Eung-Woo;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.428-437
    • /
    • 2008
  • To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (${\mid}r{\mid}$ > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture.

전통장류로부터 혈전용해 활성이 우수한 효모균주의 분리 (Isolation of Fibrinolytic Yeasts from Korean Traditional Fermented Soybean)

  • 이재형;허남기;최병곤;박은희;권세영;김명동;홍운표;여수환;백성열
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.184-189
    • /
    • 2014
  • 본 연구에서는 강원전통장류로부터 혈전용해 활성이 우수한 효모를 분리하였다. 된장에서 분리한 AFY-1 균주는 혈전용해 활성 측정결과 양성대조구인 plasmin 보다 약 1.75배 높은 활성을 나타내었다. 분리한 효모는 18S rRNA 염기서열 및 탄소원 이용 특성 분석을 통하여 Saccharomycetales sp.로 동정되었으며, AFY-1 균주의 생육 최적온도는 $32^{\circ}C$였다. 본 연구에서 분리된 혈전용해능이 우수한 효모균주는 안전성 검증 등 추가연구를 통해 발효식품 제조용 스타터로서 활용이 가능할 것으로 기대된다.

Utilization of Potato Starch Processing Wastes to Produce Animal Feed with High Lysine Content

  • Li, Ying;Liu, Bingnan;Song, Jinzhu;Jiang, Cheng;Yang, Qian
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.178-184
    • /
    • 2015
  • This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40℃, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.

건조방법에 따른 미선나무 잎의 항산화 및 항염증 효과 (Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves)

  • 장성준;전남배;박주원;장태원;정진부;박재호
    • 한국식품저장유통학회지
    • /
    • 제25권1호
    • /
    • pp.27-35
    • /
    • 2018
  • 건조 방식에 따른 미선나무 잎의 항산화 활성 및 항염증 효과를 확인한 결과, 높은 항산화 활성를 나타냈으며, 건조 잎에 비해 생잎의 항산화 활성이 뛰어났다. 페놀류 화합물의 함량은 유의적인 차이가 없었으나, 미선나무의 활성물질로 알려진 acteoside의 함량을 분석한 결과, 생잎의 acteoside의 함량이 높았다. 또한 항염증 효과를 확인하기 위해 nitric oxide의 함량 및 세포 수준에서의 염증 관련 인자인 iNOS와 COX-2의 단백질 발현 및 mRNA 수준을 확인한 결과, 생잎의 억제활성이 건조잎보다 높았다. 이를 통해 건조 잎에 비해 생잎의 이용가치가 높았으며, 이러한 항산화 및 항염증 활성은 acteoside의 함량의 차이와 밀접한 관련이 있는 것으로 사료된다.