DOI QR코드

DOI QR Code

A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus

  • Minji Kim (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Song Hee Lee (Plant Immunity Research Center, Seoul National University) ;
  • Junhyun Jeon (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
  • Received : 2023.07.28
  • Accepted : 2023.09.07
  • Published : 2023.10.31

Abstract

The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of DMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.

Keywords

Acknowledgement

This work was supported by 2021 Yeungnam University Research Grant (grant number: 221A380052).

References

  1. Pederson T. The nucleolus. Cold Spring Harbor Perspect Biol. 2011;3(3):a000638-a000638. doi: 10.1101/cshperspect.a000638.
  2. Schwarzacher HG, Wachtler F. The nucleolus. Anat Embryol. 1993;188(6):515-536. doi: 10.1007/BF00187008.
  3. Raska I, Shaw PJ, Cmarko D. New insights into nucleolar architecture and activity. Int Rev Cytol. 2006;255:177-235. https://doi.org/10.1016/S0074-7696(06)55004-1
  4. Goodfellow SJ, Zomerdijk JC. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem. 2013;61:211-236. https://doi.org/10.1007/978-94-007-4525-4_10
  5. Henras AK, Plisson-Chastang C, O'Donohue MF, et al. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA. 2015;6(2):225-242. doi: 10.1002/wrna.1269.
  6. Skamnioti P, Gurr SJ. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 2009;27(3):141-150. doi: 10.1016/j.tibtech.2008.12.002.
  7. Fernandez J, Orth K. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol. 2018;26(7):582-597. doi: 10.1016/j.tim.2017.12.007.
  8. Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol. 2009;7(3):185-195. doi: 10.1038/nrmicro2032.
  9. Mandal RK. The organization and transcription of eukaryotic ribosomal RNA genes. Prog Nucleic Acids Res Mol Bio. 1984;31:115-160. https://doi.org/10.1016/S0079-6603(08)60376-1
  10. Paule MR, White RJ. Survey and summary transcription by RNA polymerases I and III. Nucleic Acids Res. 2000;28(6):1283-1298. doi: 10.1093/nar/28.6.1283.
  11. Sharma S, Hartmann JD, Watzinger P, et al. A single N1-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes. Sci Rep. 2018;8(1):11904. doi: 10.1038/s41598-018-30383-z.
  12. Peifer C, Sharma S, Watzinger P, et al. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res. 2013;41(2):1151-1163. doi: 10.1093/nar/gks1102.
  13. Bousquet-Antonelli C, Vanrobays E, Gelugne J-P, et al. Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. RNA. 2000;6(6):826-843. doi: 10.1017/s1355838200992288.
  14. Favre D, Studer E, Michel M. Two nucleolar targeting signals present in the N-terminal part of Semliki Forest virus capsid protein. Arch Virol. 1994;137(1-2):149-155. doi: 10.1007/BF01311181.
  15. Nguyen Ba AN, Pogoutse A, Provart N, et al. NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinform. 2009;10:1-11. https://doi.org/10.1186/1471-2105-10-202
  16. Chi MH, Park SY, Lee YH. A quick and safe method for fungal DNA extraction. Plant Pathol J. 2009;25(1):108-111. doi: 10.5423/PPJ.2009.25.1.108.
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. doi: 10.1093/molbev/msw054.
  18. Bertani I, Abbruscato P, Piffanelli P, et al. Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep. 2016;8(3):388-398. doi: 10.1111/1758-2229.12403.
  19. Wlodarski T, Kutner J, Towpik J, et al. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome. PLoS One. 2011;6(8):e23168. doi: 10.1371/journal.pone.0023168.
  20. Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. 2003;28(6):329-335. doi: 10.1016/S0968-0004(03)00090-2.
  21. Jansen RP, Hurt EC, Kern H, et al. Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J Cell Biol. 1991;113(4):715-729. doi: 10.1083/jcb.113.4.715.
  22. Tollervey D, Lehtonen H, Carmo-Fonseca M, et al. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 1991;10(3):573-583. doi: 10.1002/j.1460-2075.1991.tb07984.x.
  23. Dubois M-L, Boisvert F-M. The nucleolus: structure and function. Funct Nucl. 2016;23:29-49. https://doi.org/10.1007/978-3-319-38882-3_2
  24. Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol. 1999;11(3):385-390. doi: 10.1016/S0955-0674(99)80054-4.
  25. Lin S, Rajan S, Lemberg S, et al. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics. 2022;221(3):iyac070. doi: 10.1093/genetics/iyac070.
  26. Bhabhra R, Richie DL, Kim HS, et al. Impaired ribosome biogenesis disrupts the integration between morphogenesis and nuclear duplication during the germination of Aspergillus fumigatus. Eukaryot Cell. 2008;7(4):575-583. doi: 10.1128/EC.00412-07.
  27. 1.Zhang L, Zhang D, Chen Y, et al. Magnaporthe oryzae CK2 accumulates in nuclei, nucleoli, at septal pores and forms a large ring structure in appressoria, and is involved in rice blast pathogenesis. Front Cell Infect Microbiol. 2019;9:113. doi: 10.3389/fcimb.2019.00113.
  28. Scott MS, Troshin PV, Barton GJ. NoD: a nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinform. 2011; 12(1):1-7. https://doi.org/10.1186/1471-2105-12-1
  29. Zeigler RS, Leong SA, Teng PS, editors. Rice blast disease. Wallingford: CABI; 1994.