DOI QR코드

DOI QR Code

The STAR RNA Binding Proteins SAM68, SLM-1 and SLM-2 Interact with Kinesin-I

Kinesin-I과 직접 결합하는 STAR RNA 결합 단백질인 SAM68, SLM-1과 SLM-2의 규명

  • Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine, Inje University)
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Received : 2011.07.13
  • Accepted : 2011.08.25
  • Published : 2011.09.30

Abstract

In neurons, kinesin is the molecular motor that transport cargos along microtubules. KIF5s (alias kinesin-I), are heterotetrameric motor conveying cargos, but the mechanism as to how they recognize and bind to a specific cargos has not yet been completely elucidated. To identify the interaction proteins for KIF5C, yeast two-hybrid screening was performed, and specific interaction with the $\underline{S}$am68-$\underline{l}$ike $\underline{m}$ammalian protein $\underline{2}$ (SLM-2), a member of the $\underline{s}$ignal $\underline{t}$ransducers and $\underline{a}$ctivators of $\underline{R}$NA (STAR) family of RNA processing proteins, was found. SLM-2 bound to the carboxyl (C)-terminal region of KIF5C and to other KIF5 members. The C-terminal domain of Sam68, SLM-1, SLM-2 was essential for interaction with KIF5C in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that SAM68, SLM-1, and SLM-2 specifically interacted to Kinesin-I complex. An antibody to SAM68 specifically co-immunoprecipitated SAM68 associated with KIF5s and coprecipitated with a specific set of mRNA. These results suggest that Kinesin-I motor protein transports RNA-associated protein complex in cells.

키네신은 신경세포에서 미세소관 위를 따라 소포들을 운반하는 분자 motor 단백질로 4개의 단백질로 구성되어있다. 신경세포내에서 발현하는 KIF5C가 세포 내에서 어떤 특정소포를 이동시키는가는 신경세포성장에서 중요문제이다. 이에 본연구는 KIF5C와 결합하는 단백질을 동정하기 위하여 효모 two-hybrid 방법을 사용하여 KIF5C와 특이적으로 결합하는 $\underline{S}$am68-$\underline{l}$ike $\underline{m}$ammalian protein 2 (SLM-2)을 확인하였다. $\underline{S}$ignal $\underline{T}$ransducers and $\underline{A}$ctivators of $\underline{R}$NA (STAR) family의 한 종류이며 RNA processing에 관여하는 RNA 결합단백질인 SLM-2는 KIF5s의 C-말단과 결합하며, 또한 SLM-2의 C-말단은 KIF5s와 결합하는데 필수영역이였다. 이러한 단백질간의 결합은 Glutathione S-transferase (GST) pull-down assay를 통하여 SAM68, SLM-1, SLM-2은 특이적으로 Kinesin-I과 결합함을 확인하였으며, SAM68의 항체로 면역침강한 결과 KIF5s와 mRNA는 같이 침강하였다. 신경 세포의 말단에는 돌기형성에 필요한 단백질들의 주형인 mRNA가 다수 존재하며, 이러한 mRNA는 세포의 중앙에서 세포의 말단쪽으로 이동하여야 하는데, 이번 연구 결과는 Kinesin-I이 특이적으로 mRNA을 운반할 것으로 예상된다.

Keywords

References

  1. Bassell, G. J., H. Zhang, A. L. Byrd, A. M. Femino, R. H. Singer, K. L. Taneja, L. M. Lifshitz, I. M. Herman, and K. S. Kosik. 1998. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251-265.
  2. Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart, and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594. https://doi.org/10.1016/S0092-8674(00)00162-8
  3. Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75. https://doi.org/10.1038/317073a0
  4. Brendza, R. P., L. R. Serbus, J. B. Duffy, and W. M. Saxton. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. https://doi.org/10.1126/science.289.5487.2120
  5. Cai, Q., P. Y. Pan, and Z. H. Sheng. 2007. Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J. Neurosci. 27. 7284-7296. https://doi.org/10.1523/JNEUROSCI.0731-07.2007
  6. Crino, P. B., and J. Eberwine. 1996. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17, 1173-1187. https://doi.org/10.1016/S0896-6273(00)80248-2
  7. Di Fruscio, M., T. Chen, and S. Richard. 1999. Characterization of Sam68-like mammalian proteins SLM-1 and SLM-2: SLM-1 is a Src substrate during mitosis. Proc. Natl. Acad. Sci. USA 96, 2710-2715. https://doi.org/10.1073/pnas.96.6.2710
  8. Gu, W., F. Pan, H. Zhang, G. J. Bassell, and R. H. Singer. 2002. A predominantly nuclear protein affecting cytoplasmic localization of beta-actin mRNA in fibroblasts and neurons. J. Cell Biol. 156, 41-51. https://doi.org/10.1083/jcb.200105133
  9. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  10. Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada, and N. Hirokawa. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.
  11. Kanai, Y., N. Dohmae, and N. Hirokawa. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
  12. Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon, and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. J. Life Sci. 17, 889-895. https://doi.org/10.5352/JLS.2007.17.7.889
  13. Kindler, S., H. Wang, D. Richter, and H. Tiedge. 2005. RNA transport and local control of translation. Annu. Rev. Cell Dev. Biol. 21, 223-245. https://doi.org/10.1146/annurev.cellbio.21.122303.120653
  14. Kohrmann, M., M. Luo, C. Kaether, L. DesGroseillers, C. G. Dotti, and M. A. Kiebler. 1999. Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945-2953. https://doi.org/10.1091/mbc.10.9.2945
  15. Krichevsky, A. M. and K. S. Kosik. 2001. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683-696. https://doi.org/10.1016/S0896-6273(01)00508-6
  16. Lukong, K. E. and S. Richard. 2003. Sam68, the KH domain- containing superSTAR. Biochim. Biophys. Acta. 1653, 73-86.
  17. Martin, K. C., M. Barad, and E. R. Kandel. 2000. Local protein synthesis and its role in synapse-specific plasticity. Curr. Opin. Neurobiol. 10, 587-592. https://doi.org/10.1016/S0959-4388(00)00128-8
  18. Muresan, Z. and V. Muresan. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625. https://doi.org/10.1083/jcb.200502043
  19. Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780. https://doi.org/10.1016/0092-8674(95)90538-3
  20. Rahman, A., D. S. Friedman, and L. S. Goldstein. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403. https://doi.org/10.1074/jbc.273.25.15395
  21. Rook, M. S., M. Lu, and K. S. Kosik. 2000. CaMKIIalpha 3' untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385-6393.
  22. Schuman, E. M. 1999. mRNA trafficking and local protein synthesis at the synapse. Neuron 23, 645-648. https://doi.org/10.1016/S0896-6273(01)80023-4
  23. Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. 2002. Glutamate-receptorinteracting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
  24. Su, Q., Q. Cai, C. Gerwin, C. L. Smith, and Z. H. Sheng. 2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6, 941-953. https://doi.org/10.1038/ncb1169
  25. Sung, Y. J., I. J. Weiler, W. T. Greenough, and R. B. Denman. 2004. Selectively enriched mRNAs in rat synaptoneurosomes. Brain Res. Mol. Brain Res. 126, 81-87. https://doi.org/10.1016/j.molbrainres.2004.03.013
  26. Sutton, M. A., and E. M. Schuman. 2006. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49-58. https://doi.org/10.1016/j.cell.2006.09.014
  27. Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. https://doi.org/10.1016/S0092-8674(00)81459-2
  28. Valverde, R., L. Edwards, and L. Regan. 2008. Structure and function of KH domains. FEBS. J. 275, 2712-2726. https://doi.org/10.1111/j.1742-4658.2008.06411.x
  29. Vernet, C. and K. Artzt. 1997. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479-484. https://doi.org/10.1016/S0168-9525(97)01269-9
  30. Xia, C. H., A. Rahman, Z. Yang, and L. S. Goldstein. 1998. Chromosomal localization reveals three kinesin heavy chain genes in mouse. Genomics 52, 209-213. https://doi.org/10.1006/geno.1998.5427