• Title/Summary/Keyword: rRNA genes

Search Result 774, Processing Time 0.027 seconds

Cold-Sensitive Growth of Bacillus subtilis Mutants Deleted for Putative DEAD-Box RNA Helicase Genes (Bacillus subtilis DEAD-Box RNA Helicase 유전자 결손 균주들의 저온 민감성 생장)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.233-239
    • /
    • 2010
  • Four genes (yqfR, yfmL, ydbR, deaD) were identified as putative DEAD-box RNA helicase genes in the genomic sequence of Bacillus subtilis by homology search. To understand the function of these genes, each of the genes was deleted and the constructed strains were tested for their growth charateristics at different temperatures. The growth rate of ydbR deletion mutant ($T_d$=53 min) was a little bit reduced at $37^{\circ}C$ as compared to that of wild type strain (CU1065). But the growth rate of other three (yqfR, yfmL, deaD) deletion mutants ($T_d$=30-40 min) is nearly equal to the growth rate of wild type ($T_d$=32 min). On the other hands, the growth rate of deletion mutants were reduced at $22^{\circ}C$ in order of yqfR ($T_d$=151 min), yfmL ($T_d$=214 min), ydbR ($T_d$=343 min), which showed cold-sensitive phenotype. The deletion mutant of deaD ($T_d$=109 min) grew equally as compared to the growth rate ($T_d$=102 min) of the wild type at $22^{\circ}C$ and did not show cold-sensitive growth. Double, triple and quadruple deletion mutants of these genes were constructed, and growth rate of these mutants were measured at various temperature conditions ($22^{\circ}C$, $37^{\circ}C$, $42^{\circ}C$) using LB broth. Multiple deletion mutations showed more severe cold-sensitive growth than single deletion mutations, and double deletion of ydbR and yfmL ($T_d$=984 min) showed most cold-sensitive growth than any other double mutants. Such a cold-sensitive growth of these mutations is quite similar to the result of csdA or srmB deletion in E. coli and suggested that physiological role of ydbR and yfmL is related with ribosome assembly.

Alteration in miRNA Expression Profiling with Response to Nonylphenol in Human Cell Lines

  • Paul, Saswati;Kim, Seung-Jun;Park, Hye-Won;Lee, Seung-Yong;An, Yu-Ri;Oh, Moon-Ju;Jung, Jin-Wook;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Exposures to environmental chemicals that mimic endogenous hormones are proposed for a number of adverse health effects, including infertility, abnormal prenatal and childhood development and above all cancers. In addition, recently miRNA (micro RNA) has been recognized to play an important role in various diseases and in cellular and molecular responses to toxicants. In this study, endocrine disrupting environmental toxicant, nonylphenol (NP) was treated to MCF-7 (Human breast cancer cell) and HepG2 (Human hepatocellular liver carcinoma) cell line at 3 hrs and 48 hrs time point and miRNA analysis using $mirVana^{TM}$ miRNA bioarray was performed and compared with total mRNA microarray data for the same cell line and treatment. Robust data quality was achieved through the use of dye-swap. Analysis of microarray data identifies a total of 20 and 11 miRNA expressions at 3 hrs and 48 hrs exposure to NP in MCF-7 cell line and a total of 14 and 47 miRNA expression at 3 hrs and 48 hrs exposure respectively to NP in HepG2 cell line. Expression profiling of the selected miRNA (let-7c, miR-16, miR-195, miR-200b, miR200c, miR-205, and miR-589) reveals changes in the expression of target genes related to metabolism, immune response, apoptosis, and cell differentiation. The present study can be informative and helpful to understand the role of miRNA in molecular mechanism of chemical toxicity and their influence on hormone dependent disease. Also this study may prove to be a valuable tool for screening potential estrogen mimicking pollutants in the environment.

Classification of Archaebacteria and Bacteria using a Gene Content Tree Approach (Gene Content Tree를 이용한 Archaebacteria와 Bacteria 분류)

  • 이동근;김수호;이상현;김철민;김상진;이재화
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • A Gene content phylogenetic tree and a 16s rRNA based phylogenetic tree were compared for 33 whole-genome sequenced procaryotes, neighbor joining and bootstrap methods (n=1,000). Ratio of conserved COG (clusters of orthologous groups of proteins) to orthologs revealed that they were within the range of 4.60% (Mezorhizobium loti) or 56.57% (Mycopiasma genitalium). This meant that the ratio was diverse among analyzed procaryotes and indicated the possibility of searching for useful genes. Over 20% of orthologs were independent among the same species. The gene content tree and the 16s rDNA tree showed coincidence and discordance in Archaeabacteria, Proteobacteria and Firmicutes. This might have resulted from non-conservative genes in the gene content phylogenetic tree and horizontal gene transfer. The COG based gene content tree could be regarded as a midway phylogeny based on biochemical tests and nucleotide sequences.

Draft genome sequence of Streptomyces sp. P3 isolated from potato scab diseased tubers (감자 더뎅이병 이병괴경으로부터 분리한 Streptomyces sp. P3 균주의 유전체 해독)

  • Kang, Min Kyu;Park, Duck Hwan
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.158-160
    • /
    • 2018
  • Streptomyces sp. P3 was isolated from potato scab diseased tubers in Pyeongchang, Gangwon-do, Republic of Korea in 2017. Here, we report the draft genome sequences of P3 with 9,851,971 bp size (71.2% GC content) of the chromosome. The genome comprises 8,548 CDS, 18 rRNA and 66 tRNA genes. Although strain P3 did not show pathogenicity both potato tuber assay and radish seedling assay, it possesses tomatinase (tomA) gene among conserved pathogenicity-related genes in well characterized pathogenic Streptomyces. Thus, the genome sequences determined in this study will be useful to understand for pathogenic evolution in Streptomyces species, which already adapted to potato scab pathogens.

Characterizing Milk Production Related Genes in Holstein Using RNA-seq

  • Seo, Minseok;Lee, Hyun-Jeong;Kim, Kwondo;Caetano-Anolles, Kelsey;Jeong, Jin Young;Park, Sungkwon;Oh, Young Kyun;Cho, Seoae;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.343-351
    • /
    • 2016
  • Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.

Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)

  • Abdellaoui, Najib;Kwak, Jun Soung;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.35-43
    • /
    • 2020
  • Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.

Molecular Characterization and Prevalence of 16S Ribosomal RNA Methylase Producing Bacteria in Amikacin Resistant Gram-negative Bacilli Isolated from Clinical Specimens

  • Shin, Kyung-A;Hwang, Seock-Yeon;Hong, Seung-Bok
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2012
  • Recently, the prevalence of 16S rRNA methylase conferring high-level resistance to aminoglycosides has been increasing in Gram-negative bacilli globally. We determined the prevalence and genotype of these methylase-producing bacteria, and characterized the co-resistance to ${\beta}$-lactam antibiotics and quinolone in Gram-negative clinical isolates collected in 2010 at a hospital in Korea. Among 65 amikacin-resistant isolates screened from 864 Gram-negative bacilli (GNB), 16S rRNA methylase genes were detected from 49 isolates, including Acinetobacter baumannii (43), Klebsiella pneumoniae (2), Proteus mirabilis (2) and Serratia marcescens (1), Empedobacter brevis (1). All of the 16S rRNA methylase genotype was armA and no variant sequences of amplified PCR products for armA were noted. The 16S rRNA methylase producing bacteria showed much higher resistance to aminoglycoside for Enterobacteriaceae and glucose non-fermenting (NF)-GNB and to imipenem for glucose NF-GNB, than the non-producing isolates. All of the 16S rRNA methylase producing Enterobacteriaceae had the extended-spectrum-${\beta}$-lactamase. In addition, two K. pneumoniae concurrently produced both plasmid-mediated AmpC ${\beta}$-lactamase and qnrB gene. All of the amikacin-resistant A. baumannii (43) co-harbored armA 16S rRNA methylase and $bla_{OXA-23}$ carbapenemase. In conclusion, 16S rRNA methylase producing bacteria were very prevalent among GNB in South Korea, and were commonly associated with co-resistance, including carbapenem and quinolone.

Complete Mitochondrial Genome of Mythimna loreyi (Duponchel, 1827) (Lepidoptera: Noctuidae) in South Korea (국내 뒷흰가는줄무늬밤나방의 미토콘드리아 게놈(mitochondrial genome) 분석)

  • Na Ra Jeong;Dagyeong Jeong;Gwan-Seok Lee;Wonhoon Lee
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.347-354
    • /
    • 2023
  • Mythimna loreyi (Duponchel, 1827) (Lepidoptera: Noctuidae) is a pest that damages agricultural plants, such as rice, wheat, and maize. We sequenced the entire 15,314-bp mitochondrial genome of this species. It has a typical set of genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) as well as one major non-coding A+T-rich region. Using concatenated sequences of 13 protein-coding genes and two rRNAs (13,376 bp, including gaps), phylogenetic analysis demonstrated that the sister relationship between M. loreyi and M. separata had the highest nodal support. The monophyly of each family (Noctuidae, Euteliidae, Nolidae, Erebidae, and Notodontidae) of the superfamily Noctuoidea was supported by the highest nodal support.

Assessment of the gastrointestinal microbiota using 16S ribosomal RNA gene amplicon sequencing in ruminant nutrition

  • Minseok Kim
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.364-373
    • /
    • 2023
  • The gastrointestinal (GI) tract of ruminants contains diverse microbes that ferment various feeds ingested by animals to produce various fermentation products, such as volatile fatty acids. Fermentation products can affect animal performance, health, and well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly contribute to fermentation, and are the most important in ruminant nutrition. Although traditional cultivation methods provided knowledge of the metabolism of GI microbes, most of the GI microbes could not be cultured on standard culture media. By contrast, amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. Using this approach, ruminant nutritionists and microbiologists have conducted a plethora of nutritional studies, many including dietary interventions, to improve fermentation efficiency and nutrient utilization, which has greatly expanded knowledge of the GI microbiota. This review addresses the GI content sampling method, 16S rRNA gene amplicon sequencing, and bioinformatics analysis and then discusses recent studies on the various factors, such as diet, breed, gender, animal performance, and heat stress, that influence the GI microbiota and thereby ruminant nutrition.

Phylogenetic Relationship and DNA Polymorphism of Boleophthalmus pectinirostris and Scartelaos gigas (Teleostei: Gobiidae) of Korea (한국산 짱뚱어(Boleophthalmus pectinirostris)와 남방짱뚱어(Scartelaos gigas) (Gobiidae)의 분자유전학적 계통연관과 DNA 다형화)

  • Choi, Ki Ho;Chung, Ee Yung;Park, Gab Man
    • Korean Journal of Ichthyology
    • /
    • v.25 no.3
    • /
    • pp.149-156
    • /
    • 2013
  • Phylogenetic relationships and DNA polymorphism among local populations of two Korean gobiidae species: Boleophthalmus pectinirostris and Scartelaos gigas were investigated based on 12S and 16S mitochondrial DNA and mitochondrial cytochrome b DNA sequences. DNA polymorphisms of B. pectinirostris between Suncheon and Gunsan populations were 100% identity from 434 bp segment of 12S rRNA gene and from 444 bp segment of mitochondrial cytochrome b genes, and 99.6% (2 bp different) identity from 484 bp segments of 16S rRNA genes. These results indicated the long period of geographic isolation between two populations of B. pectinirostris in Korea caused such high degrees of DNA polymorphisms. Based on the phylogenetic tree constructed from the two gobiid species in Korea, two genetically distinct groups of B. pectinirostris and S. gigas groups were recognized.