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16S ribosomal RNA gene amplicon sequencing in ruminant nutrition

Minseok Kim1,*

Abstract: The gastrointestinal (GI) tract of ruminants contains diverse microbes that 
ferment various feeds ingested by animals to produce various fermentation products, such 
as volatile fatty acids. Fermentation products can affect animal performance, health, and 
well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly 
contribute to fermentation, and are the most important in ruminant nutrition. Although 
traditional cultivation methods provided knowledge of the metabolism of GI microbes, 
most of the GI microbes could not be cultured on standard culture media. By contrast, 
amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. 
Using this approach, ruminant nutritionists and microbiologists have conducted a plethora 
of nutritional studies, many including dietary interventions, to improve fermentation 
efficiency and nutrient utilization, which has greatly expanded knowledge of the GI 
microbiota. This review addresses the GI content sampling method, 16S rRNA gene 
amplicon sequencing, and bioinformatics analysis and then discusses recent studies on 
the various factors, such as diet, breed, gender, animal performance, and heat stress, 
that influence the GI microbiota and thereby ruminant nutrition.
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INTRODUCTION

The gastrointestinal (GI) microbes play an important role in the digestion, performance, 
and health of ruminants. Within the GI microbes, the ruminal microbes are the most impor-
tant in ruminant nutrition because they can digest and convert various feeds containing 
cellulose, hemicellulose, starch, protein, and lipid to volatile fatty acids (VFAs) and microbial 
proteins [1,2]. The small intestine plays an important role in post-ruminal digestion, and 
the microbial biomass and diversity in the small intestine are low due to the short transit 
time [3]. There are only a few studies on the microbiota in the small intestine of ruminants 
[4], but the results have shown that the microbiota composition in the small intestine differs 
from that in the rumen and large intestine [5]. Like the ruminal microbes, the microbes 
in the large intestine can also ferment nutrients escaping the small intestine and produce 
VFAs, major end-products important for maintaining gut health. Many ruminant nutri-
tionists and microbiologists have focused their research efforts on identifying strategies for 
maintaining optimal GI fermentation and improving nutrient utilization efficiency [1,6].
 Initially, GI microbes, particularly ruminal microbes, were assessed using culture-depen-
dent methods, which contributed to understanding the functions and metabolisms of GI 
microbes. However, it became evident that only a small portion of the GI microbes could 
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be isolated using this approach on the standard culture media 
used in the laboratory [2]. By contrast, because the 16S rRNA 
gene can serve as a phylogenetic marker to analyze microbial 
taxa, 16S rRNA gene sequencing can be used to identify uncul-
turable GI microbes in ruminants [6]. As traditional methods, 
clone library construction and denaturing gradient gel elec-
trophoresis (DGGE) analysis of 16S rRNA gene amplicons, 
followed by Sanger sequencing, can reveal the composition 
of the GI microbiota [2,7]. However, because of the low depth 
of microbial diversity analyzed by these methods, minor taxa 
cannot be detected using these two methods. Since amplicon 
sequencing of 16S rRNA genes was developed, many nutri-
tional studies have assessed the microbial diversity of the GI 
microbiota in great depth [6].
 The objective of this review is to discuss the association 
between the GI microbiota composition and various factors, 
such as diet, breed, gender, feed efficiency, marbling score, 
and heat stress, using 16S rRNA gene amplicon sequencing 
to improve the understanding of ruminant nutrition. In 
addition, some research challenges for nutrition studies of 
ruminants are discussed.

16S rRNA GENE AMPLICON 
SEQUENCING

To assess the GI microbiota in ruminants, the first procedure 
is GI content sampling and metagenomic DNA extraction 
(Figure 1). Contents of the rumen can be collected via a ru-

minal cannula or the stomach tube method [8,9], while fecal 
samples can be collected by rectal grab using a clean glove 
[10]. Contents of other segments of the GI tract, such as the 
duodenum, jejunum, ileum, cecum, and colon, can be collect-
ed from animals after sacrifice [5]. The bacterial metagenomic 
DNA can be extracted from the collected samples, usually 
using the bead-beating method, which can improve DNA 
yield [11].
 From the extracted metagenomic DNA, 16S rRNA gene 
amplicons can be obtained using universal primers and sub-
sequentially sequenced using a next-generation sequencing 
system (Figure 1) [6]. Initially, the 454 Genome Sequencer 
FLX system (Roche, Branford, CT, USA) was used for 16S 
rRNA gene amplicon sequencing, but this sequencer is no 
longer used due to low sequence reads and the high cost. In-
stead, most microbiota studies use the Illumina MiSeq/HiSeq 
sequencing platform (San Diego, CA, USA) because of high 
sequence reads and the low cost compared to the 454 Genome 
Sequencer FLX system. The Pacific Biosciences sequencing 
system (Menlo Park, CA, USA) is also used to sequence 
nearly full-length 16S rRNA gene amplicons because it can 
provide more accurate phylogenetic resolution, but the cost 
is still high.
 Bioinformatics and data analyses are conducted on the 
resulting sequence data to assess the GI microbiota in rumi-
nants (Figure 1). The QIIME software package is one of the 
most popular bioinformatics programs for sequence process-
ing, such as sequence assembling, demultiplexing, denoising 

Figure 1. Flowchart outlining 16S rRNA gene amplicon sequencing, bioinformatic procedures, and data analysis of gastrointestinal content sam-
ples of ruminants.
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with quality filtering, and chimeric sequence detection [12]. 
Operational taxonomic units (OTUs) or amplicon sequencing 
variants can be classified based on the pre-trained reference 
databases, such as Greengenes and Silva, using the naïve 
Bayesian taxonomic classifier [13]. Alpha diversity, such as 
species richness, evenness, phylogenetic diversity, Shannon’s 
index, and Simpson’s index, can be used to evaluate microbiota 
diversity, while beta diversity based on principal coordinates 
analysis can be assessed to compare microbiota dissimilarities 
among treatment groups. In addition, from the 16S rRNA 
gene sequence data, functional features can be predicted using 
the Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt) method [14].

ASSESSMENT OF RUMINAL 
MICROBIOTA

Ruminal microbiota digest and ferment various feeds that 
are subsequently utilized by the host and thus have a crucial 
role in ruminant nutrition. Many studies have used tradi-
tional 16S rRNA gene-based methods, such as clone library 
construction [15], quantitative real-time PCR [16], and phy-
logenetic microarray [6], to evaluate various factors, such as 
diet, breed, gender, age, and geographic region [2], affecting 
the ruminal microbiota composition of various ruminant 
breeds. However, these traditional methods with low sequence 
reads cannot detect minor ruminal microbiota because of 
the low depth of percentage coverage of the microbial diversity. 
Since 16S rRNA gene amplicon sequencing producing high 
sequence reads was first used for microbiota studies, various 
factors affecting the ruminal microbiota composition have 
been assessed at an improved resolution of the microbial di-
versity in many nutritional studies.

Comparison of rumen content sampling techniques
In ruminant nutrition, collecting samples of the rumen 
contents from ruminants allows an analysis of the rumen 
microbiota, digestibility, and fermentation parameters. For 
rumen content sampling, rumen cannulation has been used 
as the standard method in many studies [17]. However, its 
disadvantage is the need for a surgical procedure for can-
nulation, and the number of rumen-cannulated ruminants 
that can be used in an experiment is limited. As an alterna-
tive method, the stomach tube method is attractive because 
it enables multiple collections of the rumen contents from 
many ruminants. Therefore, the stomach tube method is 
advantageous for increasing the statistical power of the analysis 
[9].
 Although previous studies used the traditional DGGE 
method to compare the ruminal microbiota between the 
cannulation and stomach tube method, the coverage depth 
of the rumen microbial diversity analyzed in these studies 

was limited [8,18,19]. Next-generation sequencing of 16S 
rRNA gene amplicons was used to assess the feasibility of 
the stomach tube method as an alternative to standard can-
nulation procedures. The cannulation and stomach tube 
methods gave similar results for the ruminal microbiota 
composition of Holstein and Jersey cattle [20]. Our recent 
study also indicated that the ruminal microbiota collected 
from Korean native Hanwoo cattle was not affected by the 
two different sampling methods [9]. In this context, 16S 
rRNA gene amplicon sequencing of the ruminal microbiota 
helped identify whether the stomach tube was a feasible alter-
native to the standard cannulation method in the field of 
ruminant nutrition.

Diet and ruminal microbiota
Traditional 16S rRNA gene-based techniques, such as clone 
library construction and DGGE, have been used to assess 
how the rumen microbiota composition is affected by dietary 
changes in ruminants (e.g., [15]). However, these traditional 
methods detected only dominant microbes and represented 
only a small portion of the ruminal microbial communities 
[2]. Therefore, results produced by traditional methods may 
be biased.
 High-resolution characterization of the microbial diversity 
using 16S rRNA gene amplicon analysis has been conducted 
to explore the effects of dietary changes on the composition 
of the ruminal microbiota. Some in vitro rumen fermentation 
studies evaluated the effects of different levels of additives 
on the ruminal microbiota composition (e.g., [21,22]) (Table 
1). For example, Petri et al [21] evaluated the effects of differ-
ent combinations of alkaloids, minerals, vitamins, prebiotics, 
and tannins on rumen microbiota, and these combinations 
increased the phylum Bacteroidetes and decreased the genus 
Pyramidobacter. Zhang et al [22] showed that a diet supple-
mented with grape seed procyanidin increased the abundance 
of Methanomassiliicoccus and decreased the abundance of 
Methanobrevibacter in the rumen. Other in vitro studies 
assessed the effects of different levels of feed ingredients on 
the ruminal microbiota composition (e.g., [23]). For exam-
ple, when analyzing the effects of different levels of bakery 
by-products as a feed ingredient on rumen microbiota, Humer 
et al [23] found that the inclusion of bakery by-products 
increased the genera Prevotella, Roseburia, and Megasphaera 
(Table 1). Cui et al [24] assessed whether the ruminal micro-
biota composition was affected by different levels of energy 
and protein in the diet with the same ingredients (Table 1). 
In this study, the family Prevotellaceae and the genus Butyri-
vibrio were increased by the low energy level diet. In this 
context, 16S rRNA gene amplicon sequencing will remain 
a useful tool in future nutritional studies for assessing the 
effect of dietary interventions on the ruminal microbiota.
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Table 1. Summary of factors affecting gastrointestinal microbiota in ruminants

Factor Region Animal Findings regarding microbial differences Reference
Diet Rumen In vitro inoculation of rumen fluid 

collected from Holstein cows
↑Bacteroidetes and ↓Pyramidobacter by the addition of different combinations of alkaloids, 
minerals, vitamins, prebiotics, and tannins

[21]

Rumen In vitro inoculation of rumen fluid 
collected from Holstein cows

↑Methanomassiliicoccus and ↓Methanobrevibacter by addition of grape seed procyanidin [22]

Rumen In vitro inoculation of rumen fluid 
collected from Holstein cows

↑Prevotella, Roseburia and Megasphaera by the inclusion of bakery by-products as a feed ingre-
dient

[23]

Rumen Lambs ↑Prevotellaceae and Butyrivibrio by diet with a low energy level [24]
Feces Beef cattle ↓Acinetobacter in the 0% dried distillers grains plus solubles (DDGS) group than in the 25% and 

50% DDGS groups
[50]

Feces Beef cattle ↑Clostridium, Ruminococcus, Oscillibacter, Hydrogenoanaerobacterium, Pseudoflavonifractor, 
Ethanoligenens, Selenomonas and Desulfonispora in the 15% wet distillers grains (DG) group 
than in the 5% DG group 
↓Parabacteroides and Barnesiella in the 15% DG group than in the 5% DG group

[51]

Feces Beef cattle ↑Oscillibacter, Roseburia, Faecalibacterium, Coprococcus, Blautia, Lactobacillus, Subdoligranu-
lum, Anaerovibrio, Prevotella and Bacteroides in the concentrate-based diet group  
↑Sporacetigenium, Anaerovorax, Propionibacterium and Akkermansia were more abundant in 
the forage-based diet group

[52]

Breed Rumen Brown Hanwoo cattle and Jeju 
black cattle

↑Ruminococcus in brown Hanwoo cattle than in Jeju black cattle [26]

Rumen Angus, Charolais, and Kinsella 
composite hybrid cattle

↑Bacteroidetes and Synergistetes in Charolais cattle than in the other breeds 
↑Spirochaetes, Fibrobacteres, Verrucomicrobia, Lentisphaerae, Tenericutes and Chloroflexi in 
Kinsella composite hybrid than in the other breeds

[25]

Gender Rumen Angus, Charolais, and Kinsella 
composite hybrid cattle

↑Archaea and ↓Bacteria in bulls than in steers and heifers 
↓Archaea and ↑Bacteria in steers than in bulls and heifers

[27]

Rumen Tibetan goats ↑Fibrobacter, Ruminococcus_1 and Pyramidobacter in female Tibetan goats than in male Tibetan 
goats

[28]

Feces Hanwoo cattle ↑Marvinbryantia and Coprococcus in heifers than in steers 
↑Alistipes and Ruminococcus in steers than in heifers

[53]

Marbling Rumen Hanwoo cattle ↑Oscillospira and Paludibacter in the high-marbling score group  
↑Olsenella in the low-marbling score group 

[39]

Heat stress Rumen Hanwoo cattle ↑Prevotellaceae, Lactobacillaceae and Succinivibrionaceae in response to short-term heat 
stress 
↓Ruminococcaceae, Desulfovibrionaceae, Anaerolineaceae, and Pirellulaceae in response to 
short-term heat stress

[42]

Feed  
 efficiency

Rumen Steers ↑Firmicutes, Lachnospiraceae, Veillonellaceae and Acidaminococcus in the high-efficient group 
↑Anaerovibrio in the low efficient group 
↑Operational taxonomic units (OTUs) assigned to Prevotella in the high efficient group

[34]

Rumen Angus, Charolais, and Kinsella 
composite hybrid cattle

↑Firmicutes, Succiniclasticum, Moryella and Blautia in the high efficient group in Charolais 
cattle 
↑Butyrivibrio and Desulfovibrio in the high efficient group in Kinsella composite hybrid cattle 
↑Shuttleworthia, Desulfobulbus and Mitsuokella in the low efficient group in Kinsella composite 
hybrid cattle

[25]

Rumen Angus, Charolais, and Kinsella 
composite hybrid cattle

↑Ratio of Firmicutes to Bacteroidetes in the high efficient group [27]

Rumen Beef cattle ↑OTUs assigned to Prevotellaceae, Spirochaetaceae, Paraprevotellaceae, Veillonellaceae and 
Lachnospiraceae in the high efficient group in steers 
↑One OTU assigned to Victivallaceae in the high efficient group in heifers 
↓Prevotellaceae and Fibrobacteraceae in the high efficient group in heifers

[35]

Small 
intestine

Steers ↑OTUs assigned to Butyrivibrio in the high efficient group in the jejunum [45]

Small 
intestine

Angus heifers ↑Lachnospiraceae, Ruminococcaceae and Christensenellaceae in the high efficient group in the 
duodenum 
↑Lachnospiraceae in the high efficient group in the jejunum 
↑Ruminococcaceae and Christensenellaceae in the high efficient group in the ileum

[4]

Small 
intestine

Angus and crossbred steers ↑OTUs assigned to Lachnospiraceae, Ureibacillus, Bacillus and Prevotella in the low efficient 
group in the duodenum 
↑One OTU assigned to Lachnospiraceae in the high efficient group in the duodenum 
↑OTUs assigned to Butyrivibrio, Dialister, Desulfovibrio, Agrobacterium and Ochrobactrum in the 
high efficient group in the jejunum 
↓OTUs assigned to Mogibacterium, Shuttleworthia, Lactobacillus, Corynebacterium and Atopo-
bium in the high efficient group in the jejunum 
↑OTUs assigned to Bulleidia and Saccharopolyspora in the high efficient group than in the ineffi-
cient group in the ileum 
↓One OTU assigned to Bacillus in the high efficient group in the ileum

[5]

Large 
intestine

Angus and crossbred steers ↑OTUs assigned to Dorea, Coprococcus, Butyrivibrio, Lachnospira, Sutterella and Anaeroplasma 
in the high efficient group in the cecum 
↑OTUs assigned to Clostridiales in the high-efficient group in the colon 
↓OTUs assigned to Coprococcus and Pirellulaceae in the high efficient group in the colon

[5]

Feces Angus steers ↓Ruminococcaceae and Clostridiaceae in inefficient steers 
↑Peptostreptococcaceae and Turicibacteraceae in efficient steers

[54] 

Feces Angus steers ↑Ruminococcaceae, Rikenellaceae and Christensenellaceae in efficient steers [55]
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Breed and ruminal microbiota
Host breed is another factor affecting the ruminal microbio-
ta composition of ruminants. Recent studies showed that the 
ruminal microbiota composition analyzed by 16S rRNA gene 
amplicon sequencing was different between Holstein and 
Jersey cattle breeds fed the same diet [17,20] and was associ-
ated with different methane emissions from the rumen [17]. 
Differences have also been observed in the ruminal micro-
biota composition among Angus, Charolais, and Kinsella 
composite hybrid breeds (Table 1) [25]. Similarly, our recent 
study demonstrated that the overall microbiota composition 
of the rumen differed between Korean native brown Hanwoo 
and Jeju black cattle fed the same diet at the same farm [26]. 
Particularly, cellulolytic Ruminococcus was greater in brown 
Hanwoo cattle than in Jeju black cattle (Table 1). Host genetics 
can affect heritable rumen microbial features, and different 
breeds may shape distinct ruminal microbiota due to genetic 
influence [27]. Therefore, selective breeding may be one 
strategy to manipulate the ruminal microbiota composition 
[25].

Gender and ruminal microbiota
A recent study of the ruminal microbiota composition in 709 
beef cattle identified gender as one of the factors affecting 
the ruminal microbiota composition (Table 1) [27]. Another 
study showed that the ruminal microbiota composition dif-
fered between different genders of Tibetan goats (Table 1) 
[28]. Gut microbiota in humans was changed after male cas-
tration [29], indicating that different sex hormones could 
lead to microbial differences between genders [30]. In addi-
tion, body mass index (BMI) has been reported to be associated 
with the gut microbiota in humans [30]. The BMI was sig-
nificantly associated with the gut microbiota in females, 
whereas it was not associated with the gut microbiota in 
males [31]. As shown in humans, BMI may differentially in-
fluence the ruminal microbiota between different genders. 

Feed efficiency and ruminal microbiota
Feed accounts for the largest portion of total cost in the beef 
industry, so improving feed efficiency is important to increase 
profitability in animal production. Although some studies 
evaluated the association between feed efficiency and the 
ruminal microbiota using the traditional DGGE method 
[32,33], the use of 16S rRNA gene amplicon sequencing has 
improved the depth of percentage coverage of microbial di-
versity for assessing and comparing the ruminal microbiota 
between high- and low-feed efficiency groups in beef cattle 
(Table 1) [34]. The results showed that the phylum Firmicutes 
and the families Lachnospiraceae and Veillonellaceae were 
more abundant in the high-efficiency group than in the low-
efficiency group. At the genus level, Acidaminococcus was 
more abundant in the high-efficiency group than in the 

low-efficiency group, whereas Anaerovibrio was more abun-
dant in the low-efficiency group than in the high-efficiency 
group. In addition, some OTUs assigned to the genus Pre-
votella were more abundant in the high-efficiency group 
than in the low-efficiency group. Since this study, many 
studies on the association between feed efficiency and the 
ruminal microbiota have been conducted in cattle [25,27,35] 
and sheep [36,37]. Li et al [25] indicated that the phylum 
Firmicutes was more abundant in the high-efficiency group 
than in the low-efficiency group, while the genera Succini-
clasticum, Moryella, and Blautia were more abundant in 
the high-efficiency group than in the low-efficiency group 
in Charolais cattle (Table 1). Conversely, in Kinsella com-
posite hybrid cattle, the genera Butyrivibrio and Desulfovibrio 
were more abundant in the high-efficiency group than in the 
low-efficiency group, whereas Shuttleworthia, Desulfobulbus, 
and Mitsuokella were more abundant in the low-efficiency 
group than in the high-efficiency group. Li et al [27] showed 
that the ratio of Firmicutes to Bacteroidetes was positively 
correlated with feed efficiency in beef cattle (Table 1). Paz et 
al [35] reported that OTUs assigned to the families Prevotel-
laceae, Spirochaetaceae, Paraprevotellaceae, Veillonellaceae, 
and Lachnospiraceae were more abundant in the high-efficiency 
groups than in the low-efficiency group, while Prevotellace-
ae OTUs were more or less abundant in the high-efficiency 
group than in the low-efficiency group in steers (Table 1). 
In heifers, one OTU assigned to the family Victivallaceae 
was more abundant in the high-efficiency group than in 
the low-efficiency group, whereas OTUs assigned to the 
families Prevotellaceae and Fibrobacteraceae were less abun-
dant in the high-efficiency group than in the low-efficiency 
group. Our recent study assessed the association between 
feed efficiency and the ruminal microbiota in Hanwoo cat-
tle [38]. Taxa abundant in high-efficiency ruminants may 
serve as potential biomarkers of high-feed efficiency and 
provide strategies to improve feed efficiency through the 
manipulation of the ruminal microbiota.

Marbling score and ruminal microbiota
In the beef industry, increasing the marbling content is im-
portant to increase economic benefits. Our recent study 
assessed the association between the marbling score and the 
ruminal microbiota in Hanwoo cattle with a genetically high-
marbling content [39]. In this study, Hanwoo steers belonging 
to either a high-marbling score group or a low-marbling score 
group were selected for comparison. Results showed that the 
overall ruminal microbiota composition differed between 
these two extreme groups, and the lipid metabolism pathways 
were enriched in the high-marbling score group in functional 
prediction. Taxa identified in high-marbled cattle (Table 1) 
may be targeted to increase marbling content through the 
manipulation of the ruminal microbiota.
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Heat stress and ruminal microbiota
16S rRNA gene amplicon sequencing has provided valuable 
insight into the impact of heat stress on the ruminal micro-
biota composition of cattle. Correia Sales et al [40] indicated 
differences in the ruminal microbiota composition between 
thermoneutral (24°C) and heat-stressed groups (34°C) of 
Nellore cattle; in particular, heat stress decreased the relative 
abundance of fibrolytic bacteria. In another study, lactate-
producing bacteria decreased, and acetate-producing bacteria 
increased in Holstein dairy cattle exposed to heat stress (34°C) 
compared to the thermoneutral (24°C) group [41]. Our re-
cent study assessed the ruminal microbiota composition in 
Hanwoo cattle exposed to acute heat stress in climate-con-
trolled chambers [42]. The results showed that after the 
environmental temperature of 15°C was raised to 35°C at 
60% humidity, the fibrolytic bacteria decreased, whereas the 
lactate-producing bacteria increased (Table 1). In cattle ex-
posed to heat stress, increased lactate production reduces 
the ruminal pH and, subsequently, the abundance of fibro-
lytic bacteria, which are sensitive to low pH [43]. These 16S 
rRNA gene amplicon analyses may contribute to developing 
new feeding strategies to improve the adaptability of rumi-
nants and maintain a normal ruminal microbiota composition 
under heat stress [44].

ASSESSMENT OF INTESTINAL 
MICROBIOTA

While most of the microbiota studies published to date have 
focused on the rumen or feces of ruminants, some studies 
have assessed the microbiota in the small and large intestine 
of ruminants. Myer et al [45] showed that the jejunal micro-
biota composition was associated with feed efficiency in beef 
cattle; specifically, OTUs assigned to Butyrivibrio were more 
abundant in the efficient group than in the inefficient group 
(Table 1). Liu et al [4] collected samples of the duodenal, je-
junal, and ileal contents to evaluate the association between 
feed efficiency and the small intestine microbiota in Angus 
cattle (Table 1). In this study, the families Lachnospiraceae, 
Ruminococcaceae, and Christensenellaceae were more abun-
dant in the efficient group than in the inefficient group in 
the duodenum [4]. The family Lachnospiraceae was more 
abundant in the efficient group than in the inefficient group 
in the jejunum, while the families Ruminococcaceae and 
Christensenellaceae were more abundant in the efficient group 
than in the inefficient group in the ileum [4]. Other researchers 
investigated the association between the microbiota of the 
large intestine (e.g., cecum and colon) with feed efficiency in 
cattle [46,47]. Freetly et al [5] assessed the ruminal, duode-
nal, jejunal, ileal, cecal, and colonic microbiota to investigate 
their associations with animal performance in beef cattle 
(Table 1). In the duodenum, OTUs assigned to Lachnospira-

ceae, Ureibacillus, Bacillus, and Prevotella were more abundant 
in the inefficient group than in the efficient group, while the 
reverse held true for one OTU assigned to Lachnospiraceae 
[5]. In the jejunum, OTUs assigned to Butyrivibrio, Dialister, 
Desulfovibrio, Agrobacterium, and Ochrobactrum were more 
abundant in the efficient group than in the inefficient group, 
whereas OTUs assigned to Mogibacterium, Shuttleworthia, 
Lactobacillus, Corynebacterium, and Atopobium were less 
abundant in the efficient group than in the inefficient group 
[5]. In the ileum, OTUs assigned to Bulleidia and Saccha-
ropolyspora were more abundant in the efficient group than 
in the inefficient group, while one OTU assigned to Bacillus 
was less abundant in the efficient group than in the ineffi-
cient group [5]. In the cecum, OTUs assigned to the genera 
Dorea, Coprococcus, Butyrivibrio, Lachnospira, Sutterella, and 
Anaeroplasma were more abundant in the efficient group than 
in the inefficient group, while OTUs assigned to the families 
Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae 
were more or less abundant in the efficient group than in the 
inefficient group [5]. In the colon, OTUs assigned to the order 
Clostridiales were more abundant in the efficient group than 
in the inefficient group, whereas OTUs assigned to the genera 
Coprococcus and Pirellulaceae were less abundant in the effi-
cient group than in the inefficient group [5]. Wang et al [48] 
evaluated the ruminal, duodenal, jejunal, ileal, cecal, colonic, 
and rectal microbiota and identified microbial differences 
across the GI tract in crossbred cattle. In this study, Actino-
bacteria and Patescibacteria were dominant in the small 
intestine, while Ruminococcaceae, Rikenellaceae, and Bacte-
roidaceae were dominant in the large intestine [48]. Although 
intestinal microbes are less diverse than ruminal microbes, 
these studies have identified possible intestinal microbiota 
that can serve as potential biomarkers to represent high-feed 
efficiency, and their manipulation may be used as strategies 
to improve feed efficiency in ruminants.

ASSESSMENT OF FECAL MICROBIOTA

The fecal microbiota in ruminants can affect animal health 
and food safety. Various factors affect both the fecal micro-
biota composition and the ruminal microbiota composition; 
however, the overall fecal microbiota composition differs from 
the ruminal microbiota composition [49]. Recent studies of 
the changes in the fecal microbiota due to various factors, 
such as diet, gender, feed efficiency, and pathogen prevalence, 
using 16S rRNA gene amplicon sequencing, have improved 
the understanding in the field of ruminant nutrition.

Diet and fecal microbiota
Previous studies indicated that fecal microbiota composition 
differed among cattle fed different levels of dried distillers 
grains plus solubles (DDGS) [50] and cattle fed different levels 
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of wet distillers grains diets (DG) [51]. Callaway et al [50] 
indicated that Acinetobacter was lower in the 0% DDGS group 
than in the 25% and 50% DDGS groups in cattle (Table 1). 
Rice et al [51] showed that Clostridium, Ruminococcus, Oscilli-
bacter, Hydrogenoanaerobacterium, Pseudoflavonifractor, 
Ethanoligenens, Selenomonas, and Desulfonispora were more 
abundant in the 15% DG group than in the 5% DG group, 
whereas Parabacteroides and Barnesiella were less abundant 
in the 15% DG group than in the 5% DG group in cattle 
(Table 1). Kim et al [52] showed that the fecal microbiota 
composition of 426 beef cattle was affected by feeding different 
levels of concentrates. In this study, Oscillibacter, Roseburia, 
Faecalibacterium, Coprococcus, Blautia, Lactobacillus, Sub-
doligranulum, Anaerovibrio, Prevotella, and Bacteroides were 
more abundant in the concentrate-based diet group than in 
the forage-based diet group, whereas Sporacetigenium, An-
aerovorax, Propionibacterium, and Akkermansia were more 
abundant in the forage-based diet group than in the concen-
trate-based diet group (Table 1). Our recent study also indicated 
that diet greatly affected the fecal microbiota in Hanwoo cattle 
[53]. In this study, Romboutsia, Paeniclostridium, and Turici-
bacter were differentially more abundant in Hanwoo cattle 
fed the late fattening total mixed ration (TMR) diet, while 
Akkermansia, Bacteroides, and Monoglobus were differen-
tially more abundant in the Hanwoo cattle fed TMR plus oat 
hay. Diet is a major factor affecting the fecal microbiota com-
position, and an appropriate diet is necessary to maintain 
gut health in ruminants.

Gender and fecal microbiota
To date, little study has been conducted to compare the fecal 
microbiota between different genders of ruminants. Our 
recent study compared the fecal microbiota composition 
between Hanwoo steers and heifers fed the same diet at the 
same farm [53]. In this study, Marvinbryantia, Coprococcus, 
Alistipes, and Ruminococcus were differentially abundant 
between Hanwoo steers and heifers under the same dietary 
condition (Table 1) [53]. The results showed that gender 
influenced the fecal microbiota composition of Hanwoo 
cattle. Different sex hormones could lead to microbial dif-
ferences between genders because bile acid profiles affecting 
gut microbiota can be shifted by sex hormones [27]. Con-
sideration of the diet×gender interaction may be useful for 
maintaining gut health in ruminants.

Feed efficiency and fecal microbiota
Similar to findings for the rumen, there is a possible link be-
tween feed efficiency and the fecal microbiota in cattle. Some 
studies indicated that the fecal microbiota composition dif-
fered between high- and low-feed efficiency cattle [54,55]. 
Lourenco et al [54] compared fecal microbiota between effi-
cient and inefficient Angus steers during the feedlot-finishing 

stage. Their results showed that Ruminococcaceae and Clos-
tridiaceae were decreased in inefficient Angus steers, whereas 
Peptostreptococcaceae and Turicibacteraceae were increased 
in efficient Angus steers during the feedlot-finishing stage 
(Table 1). Welch et al [55] showed that Ruminococcaceae, 
Rikenellaceae, and Christensenellaceae were more abundant 
in efficient Angus steers than inefficient Angus steers (Table 
1). Our recent study also noticed differences between high- 
and low-feed efficiency groups of Hanwoo cattle; specifically, 
Paeniclostridium and Romboutsia were less abundant in effi-
cient Hanwoo steers than in inefficient Hanwoo steers [56]. 
Differentially abundant taxa between the two extreme groups 
may be used as potential biomarkers of high-feed efficiency 
in cattle. Manipulation of the fecal microbiota composition 
may be a strategy to improve feed efficiency in ruminants.

Pathogens and fecal microbiota
Pathogenic Escherichia coli (E. coli) O157:H7 is commonly 
found in cattle feces and can infect humans through con-
taminated food [57]. Although most cattle shed low numbers 
of E. coli O157:H7 in their feces, some supershedder cattle 
produce a great number of E. coli O157:H7 in their feces. Kim 
et al [10] indicated that the fecal microbiota composition 
was different between high and low E. coli O157:H7 preva-
lence and enumeration groups of beef cattle, suggesting that 
manipulation of the fecal microbiota composition may be a 
strategy to reduce E. coli O157:H7 shedding. The addition of 
corn wet distillers grains with solubles to the diet of cattle 
increased E. coli O157:H7 in the bovine feces [58], whereas 
the addition of soybean meal decreased E. coli O157:H7 in 
the bovine feces [59]. These studies indicate that dietary in-
terventions can be used as strategies to reduce E. coli O157:H7 
prevalence and enumeration in cattle feces.

CONCLUSION REMARKS

In recent nutritional studies, 16S rRNA gene amplicon anal-
ysis has been increasingly used to expand the knowledge of 
the GI microbiota, particularly the ruminal microbiota, and 
the influencing factors, such as diet, additives, breed, gender, 
feed efficiency, methane production, and heat stress, in ru-
minants. The GI microbiota that are differentially abundant 
in high-efficiency ruminants may be used as potential bio-
markers for improving animal productivity. Some heat-stress-
resistant microbes may be beneficial as probiotics in ruminant 
nutrition to enhance the performance or health of cattle 
under heat stress [44]. Microbial metabolism can be recon-
structed from metagenomic data, and new culture media 
may be devised to isolate and cultivate novel GI microbes 
[60]. The use of these novel GI microbes may contribute to 
enhancing the performance of ruminants. In addition, the 
GI microbiota in ruminants needs to be considered as a 
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heritable phenotype in future studies [61]. The GI microbiota, 
particularly the ruminal microbiota, may be incorporated 
into breeding programs to maximize the number of high-
performance ruminants. In order to account for the influence 
of host species and the geographic region, continuous efforts 
to assess the GI microbiota in domestic ruminants are needed 
to improve animal performance or health in future studies.
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