Browse > Article
http://dx.doi.org/10.7847/jfp.2020.33.1.035

Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)  

Abdellaoui, Najib (Department of Life Science, School of Medical-biosystematics, Soongsil University)
Kwak, Jun Soung (Department of Aquatic Life Medicine, Pukyong National University)
Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Journal of fish pathology / v.33, no.1, 2020 , pp. 35-43 More about this Journal
Abstract
Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.
Keywords
Hypoxia; Circulatory microRNA; Olive flounder; Serum miR-210; $HIF-1{\alpha}$; $HSP90{\alpha}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B. and Tewari, M.: Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 105: 10513-10518, 2008.   DOI
2 Ohh, M., Park, C.W., Ivan, M., Hoffman, M.A., Kim, T.-Y., Huang, L.E., Pavletich, N., Chau, V. and Kaelin, W.G.: Ubiquitination of hypoxia-inducible factor requires direct binding to the [bgr]-domain of the von Hippel-Lindau protein. Nat. Cell Biol., 2: 423-427, 2000.   DOI
3 Park, M.H., Bae, S.S., Choi, K.-Y. and Min, D.S.: Phospholipase D2 promotes degradation of hypoxia-inducible factor-$1{\alpha}$ independent of lipase activity. Exp. Mol. Med., 47: e196, 2015.   DOI
4 Poellinger, L. and Johnson, R.S.: HIF-1 and hypoxic response: the plot thickens. Curr. Opin. Genet. Dev., 14: 81-85, 2004.   DOI
5 Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7: 585-619, 2010.   DOI
6 Richards, J.G.: Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol., 214: 191-199, 2011.   DOI
7 Rosjo, H., Dahl, M.B., Bye, A., Andreassen, J., Jorgensen, M., Wisloff, U., Christensen, G., Edvardsen, T. and Omland, T.: Prognostic value of circulating microRNA-210 levels in patients with moderate to severe aortic stenosis. PLoS One, 9: e91812, 2014.   DOI
8 Rueda, A., Barturen, G., Lebron, R., Gomez-Martin, C., Alganza, A., Oliver, J.L. and Hackenberg, M.: sRN Atoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res., 43: W467-W473, 2015.   DOI
9 Semenza, G.L.: Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology, 24: 97-106, 2009.   DOI
10 Soitamo, A.J., Rabergh, C.M.I., Gassmann, M., Sistonen, L. and Nikinmaa, M.: Characterization of a Hypoxia-inducible Factor (HIF-$1{\alpha}$) from Rainbow Trout: Accumulation of protein occurs at normal venous oxygen tension. J. Biol. Chem., 276: 19699-19705, 2001.   DOI
11 Stroka, D.M., Burkhardt, T., Desbaillets, I., Wenger, R. H., Neil, D.A.H., Bauer, C., Gassmann, M. and Candinas, D.: HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J., 15: 2445-2453, 2001.   DOI
12 Sturm, M., Hackenberg, M., Langenberger, D. and Frishman, D.: TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics, 11: 1-17, 2010.   DOI
13 Tse, A.C.-K., Li, J.-W., Chan, T.-F., Wu, R.S.-S. and Lai, K.-P.: Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma. Aquat. Toxicol., 165: 189-196, 2015.   DOI
14 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J. and Lotvall, J.O.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9: 654-659, 2007.   DOI
15 Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L. and Wang, J.: WEGO: a web tool for plotting GO annotations. Nucleic Acids Res., 34: W293-W297, 2006.   DOI
16 Zhang, C., Wang, C., Chen, X., Yang, C., Li, K., Wang, J., Dai, J., Hu, Z., Zhou, X., Chen, L., Zhang, Y., Li, Y., Qiu, H., Xing, J., Liang, Z., Ren, B., Yang, C., Zen, K. and Zhang, C.-Y.: Expression profile of microRNAs in serum: A fingerprint for esophageal squamous cell carcinoma. Clin. Chem., 56: 1871-1879, 2010.   DOI
17 Chan, S.Y. and Loscalzo, J.: MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle, 9: 1072-1083, 2010.   DOI
18 Bandara, V., Michael, M. and Gleadle, J.: Hypoxia represses microRNA biogenesis proteins in breast cancer cells. BMC Cancer, 14: 533, 2014.   DOI
19 Bartel, D.P.: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116: 281-297, 2004.   DOI
20 Bye, A., Rosjo, H., Aspenes, S.T., Condorelli, G., Omland, T. and Wisloff, U.: Circulating microRNAs and aerobic fitness? The HUNT-Study. PLoS One, 8: e57496, 2013.   DOI
21 Chan, S.Y., Zhang, Y.-Y., Hemann, C., Mahoney, C.E., Zweier, J.L. and Loscalzo, J.: MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metabolism, 10: 273-284, 2009.   DOI
22 Granchi, C., Fancelli, D. and Minutolo, F.: An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg. Med. Chem. Lett., 24: 4915-4925, 2014.   DOI
23 Cicchillitti, L., Di Stefano, V., Isaia, E., Crimaldi, L., Fasanaro, P., Ambrosino, V., Antonini, A., Capogrossi, M.C., Gaetano, C., Piaggio, G. and Martelli, F.: Hypoxia-inducible factor 1-alpha induces miR-210 in normoxic differentiating myoblasts. J. Biol. Chem., 287: 44761-44771, 2012.   DOI
24 Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C. and Marks, D.S.: MicroRNA targets in Drosophila. Genome Biol., 5: 1-14, 2003.
25 Gibbings, D.J., Ciaudo, C., Erhardt, M. and Voinnet, O.: Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol., 11: 1143-1149, 2009.   DOI
26 Guimbellot, J.S., Erickson, S.W., Mehta, T., Wen, H., Page, G.P., Sorscher, E.J. and Hong, J.S.: Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med. Genomics, 2: 1-17, 2009.   DOI
27 Huang, X., Le, Q.-T. and Giaccia, A.J.: MiR-210 - micromanager of the hypoxia pathway. Trends Mol. Med., 16: 230-237, 2010.   DOI
28 Ho, A.S., Huang, X., Cao, H., Christman-Skieller, C., Bennewith, K., Le, Q.-T. and Koong, A.C.: Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol., 3: 109-113, 2010.   DOI
29 Hua, Z., Lv, Q., Ye, W., Wong, C.-K.A., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B. and Zhang, Y.: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One, 1: e116, 2006.   DOI
30 Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.-T. and Giaccia, A.J.: Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell, 35: 856-867, 2009.   DOI
31 Hutvagner, G. and Zamore, P.D.: A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297: 2056-2060, 2002.   DOI
32 Ivan, M., Harris, A.L., Martelli, F. and Kulshreshtha, R.: Hypoxia response and microRNAs: no longer two separate worlds. J. Cell. Mol. Med., 12: 1426-1431, 2008.   DOI
33 Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T. and Tomari, Y.: Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell, 39: 292-299, 2010.   DOI
34 John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and Marks, D.S.: Human microRNA targets. PLoS Biol., 2: e363, 2004.   DOI
35 Kallio, P.J., Pongratz, I., Gradin, K., McGuire, J. and Poellinger, L.: Activation of hypoxia-inducible factor $1{\alpha}$: Posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proceedings of the National Academy of Sciences, 94: 5667-5672, 1997.   DOI
36 Lau, K., Lai, K.P., Bao, J.Y.J., Zhang, N., Tse, A., Tong, A., Li, J.W., Lok, S., Kong, R.Y.C., Lui, W.Y., Wong, A. and Wu, R.S.S.: Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One, 9: e110698, 2014.   DOI
37 Katakowski, M., Buller, B., Wang, X., Rogers, T. and Chopp, M.: Functional microRNA is transferred between glioma cells. Cancer Res., 70: 8259-8263, 2010.   DOI
38 Kharaziha, P., Ceder, S., Li, Q. and Panaretakis, T.: Tumor cell-derived exosomes: A message in a bottle. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1826: 103-111, 2012.   DOI
39 Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.-G., Croce, C.M., Negrini, M., Calin, G.A. and Ivan, M.: A microRNA signature of hypoxia. Mol. Cell. Biol., 27: 1859-1867, 2007.   DOI
40 Lai, K.P., Li, J.-W., Tse, A.C.-K., Chan, T.-F. and Wu, R.S.S.: Hypoxia alters steroidogenesis in female marine medaka through miRNAs regulation. Aquat. Toxicol., 172: 1-8, 2016.   DOI
41 Lays, N., Iversen, M.M.T., Frantzen, M. and Jorgensen, E.H.: Physiological stress responses in spotted wolffish (Anarhichas minor) subjected to acute disturbance and progressive hypoxia. Aquaculture, 295: 126-133, 2009.   DOI
42 Minet, E., Mottet, D., Michel, G., Roland, I., Raes, M., Remacle, J. and Michiels, C.: Hypoxia-induced activation of HIF-1: role of HIF-$1{\alpha}$-Hsp90 interaction. FEBS Lett., 460: 251-256, 1999.   DOI