• Title/Summary/Keyword: rRMSE

Search Result 525, Processing Time 0.021 seconds

Development of a Model for Calculating the Construction Duration of Urban Residential Housing Based on Multiple Regression Analysis (다중 회귀분석 기반 도시형 생활주택의 공사기간 산정 모델 개발)

  • Kim, Jun-Sang;Kim, Young Suk
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.93-101
    • /
    • 2021
  • As the number of small households (1 to 2 persons per household) in Korea gradually increases, so does the importance of housing supply policies for small households. In response to the increase in small households, the government has been continuously supplying urban housing for these households. Since housing for small households is a sales and rental business similar to apartments and general business facilities, it is important for the building owner to calculate the project's estimated construction duration during the planning stage. Review of literature found a model for estimating the duration of construction of large-scale buildings but not for small-scale buildings such as urban housing for small households. Therefore this study aimed to develop and verify a model for estimating construction duration for urban housing at the planning stage based on multiple regression analysis. Independent variables inputted into the estimation model were building site area, building gross floor area, number of below ground floors, number of above ground floors, number of buildings, and location. The modified coefficient of determination (Ra2) of the model was 0.547. The developed model resulted in a Root Mean Square Error (RMSE) of 171.26 days and a Mean Absolute Percentage Error (MAPE) of 26.53%. The developed estimation model is expected to provide reliable construction duration calculations for small-scale urban residential buildings during the planning stage of a project.

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.

The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data (기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정)

  • Han, Daehyeon;Kim, Young Jun;Im, Jungho;Lee, Sanggyun;Lee, Yeonsu;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1261-1272
    • /
    • 2018
  • It is important to measure the Arctic surface air temperature because it plays a key-role in the exchange of energy between the ocean, sea ice, and the atmosphere. Although in-situ observations provide accurate measurements of air temperature, they are spatially limited to show the distribution of Arctic surface air temperature. In this study, we proposed machine learning-based models to estimate the Arctic surface air temperature in summer based on buoy data and Advanced Microwave Scanning Radiometer 2 (AMSR2)satellite data. Two machine learning approaches-random forest (RF) and support vector machine (SVM)-were used to estimate the air temperature twice a day according to AMSR2 observation time. Both RF and SVM showed $R^2$ of 0.84-0.88 and RMSE of $1.31-1.53^{\circ}C$. The results were compared to the surface air temperature and spatial distribution of the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). They tended to underestimate the Barents Sea, the Kara Sea, and the Baffin Bay region where no IABP buoy observations exist. This study showed both possibility and limitations of the empirical estimation of Arctic surface temperature using AMSR2 data.

Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis

  • Joshi, Rahul;Joshi, Ritu;Amanah, Hanim Zuhrotul;Faqeerzada, Mohammad Akbar;Jayapal, Praveen Kumar;Kim, Geonwoo;Baek, Insuck;Park, Eun-Sung;Masithoh, Rudiati Evi;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.299-310
    • /
    • 2021
  • Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model (유역모델을 이용한 농업용수 신속회귀수량 산정 연구)

  • Lee, Jiwan;Jung, Chunggil;Kim, Daye;Maeng, Seungjin;Jeong, Hyunsik;Jo, Youngsik;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.321-331
    • /
    • 2022
  • In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data (다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정)

  • Kim, Ho-Rim;Yu, Soonyoung;Yun, Seong-Taek;Kim, Kyoung-Ho;Lee, Goon-Taek;Lee, Jeong-Ho;Heo, Chul-Ho;Ryu, Dong-Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.353-366
    • /
    • 2022
  • Spatial estimation of geoscience data (geo-data) is challenging due to spatial heterogeneity, data scarcity, and high dimensionality. A novel spatial estimation method is needed to consider the characteristics of geo-data. In this study, we proposed the application of Gaussian Mixture Model (GMM) among machine learning algorithms with multivariate data for robust spatial predictions. The performance of the proposed approach was tested through soil chemical concentration data from a former smelting area. The concentrations of As and Pb determined by ex-situ ICP-AES were the primary variables to be interpolated, while the other metal concentrations by ICP-AES and all data determined by in-situ portable X-ray fluorescence (PXRF) were used as auxiliary variables in GMM and ordinary cokriging (OCK). Among the multidimensional auxiliary variables, important variables were selected using a variable selection method based on the random forest. The results of GMM with important multivariate auxiliary data decreased the root mean-squared error (RMSE) down to 0.11 for As and 0.33 for Pb and increased the correlations (r) up to 0.31 for As and 0.46 for Pb compared to those from ordinary kriging and OCK using univariate or bivariate data. The use of GMM improved the performance of spatial interpretation of anthropogenic metals in soil. The multivariate spatial approach can be applied to understand complex and heterogeneous geological and geochemical features.

A Study on the Effect of Macroeconomic Variables on Apartment Rental Housing Prices by Region and the Establishment of Prediction Model (거시경제변수가 지역 별 아파트 전세가격에 미치는 영향 및 예측모델 구축에 관한 연구)

  • Kim, Eun-Mi
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.211-231
    • /
    • 2022
  • This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables

Analysis of Downstream Water Quality Improvement by Agricultural Reservoir Release Using QUAL2K (QUAL2K 모형을 이용한 농업용 저수지 방류에 따른 하류하천 수질개선효과 분석)

  • Kim, Dong Hyeon;Kim, Sang Min
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.205-216
    • /
    • 2016
  • The purpose of this study was to analyze the water quality improvement effect by providing the environmental flows from agricultural reservoir using QUAL2K model. The Bonghyun reservoir, located in Hai-myun, which is in the city of Gosung in the Gyeongnam province, was selected for study area. The stream monitoring was conducted 24 times from 2011 to 2013 and the water quality was monitored in 6 stations including reservoir. Reservoir operation was simulated to determine the environmental flow supply amount from March to October with the constraint that environmental flow supply was restrained when the storage of reservoir was below the one-third of effective storage. The QUAL2K model was selected for water quality simulation. Simulated water quality were compared with the observed for BOD, SS, TN, and TP. R2 were ranged 0.8508~0.9913, RMSE were 0.005~0.52 mg/L, and NSE were 0.949~0.998 for water quality items, respectively. The QUAL2K model simulation results indicated that the water quality improvement effect by providing the environmental flows(3,000 ton/day) were 9.2% for BOD, 21.0% for SS, -9.0% for TN, -2.4% for TP, respectively.