DOI QR코드

DOI QR Code

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation

스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상

  • KIM, Ye-Jin (Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • KANG, Eun-Jin (Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • CHO, Dong-Jin (Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • LEE, Si-Woo (Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • IM, Jung-Ho (Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 김예진 (울산과학기술원 도시환경공학부) ;
  • 강은진 (울산과학기술원 도시환경공학부) ;
  • 조동진 (울산과학기술원 도시환경공학부) ;
  • 이시우 (울산과학기술원 도시환경공학부) ;
  • 임정호 (울산과학기술원 도시환경공학부)
  • Received : 2022.09.07
  • Accepted : 2022.09.18
  • Published : 2022.09.30

Abstract

Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

지상 오존은 차량 및 산업 현장에서 배출된 질소화합물(Nitrogen oxides; NOx)과 휘발성 유기화합물(Volatile Organic Compounds; VOCs)의 광화학 반응을 통해 생성되어 식생 및 인체에 악영향을 끼친다. 국내에서는 실시간 오존 모니터링을 수행하고 있지만 관측소 기반으로, 미관측 지역의 공간 분포 분석에 어려움이 있다. 본 연구에서는 스태킹 앙상블 기법을 활용하여 매시간 남한 지역의 지상 오존 농도를 1.5km의 공간해상도로 공간내삽하였고, 5-fold 교차검증을 수행하였다. 스태킹 앙상블의 베이스 모델로는 코크리깅(Cokriging), 다중 선형 회귀(Multi-Linear Regression; MLR), 랜덤 포레스트(Random Forest; RF), 서포트 벡터 회귀(Support Vector Regression; SVR)를 사용하였다. 각 모델의 정확도 비교 평가 결과, 스태킹 앙상블 모델이 연구 기간 내 시간별 평균 R 및 RMSE이 0.76, 0.0065ppm으로 가장 높은 성능을 보여주었다. 스태킹 앙상블 모델의 지상 오존 농도 지도는 복잡한 지형 및 도시화 변수의 특징이 잘 드러나며 더 넓은 농도 범위를 보여주었다. 개발된 모델은 매시간 공간적으로 연속적인 공간 지도를 산출할 수 있을 뿐만 아니라 8시간 평균치 산출 및 시계열 분석에 있어서도 활용 가능성이 클 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(해양수산부)의 재원으로 해양수산과학기술진흥원-과학기술기반 해양환경영향평가 기술개발사업 지원을 받았으며 (KIMST-20210427), 환경부의 재원으로 한국환경산업기술원의 환경보건디지털 조사기반 구축 기술개발사업의 지원을 받아 연구되었습니다(2021003330001(NTIS: 1485017948))

References

  1. Adam-Poupart, A., Brand, A., Fournier, M., Jerrett, M. and Smargiassi, A., 2014. Spatiotemporal modeling of ozone levels in Quebec(Canada): a comparison of kriging, land-use regression(LUR), and combined Bayesian maximum entropy-LUR approaches. Environmental health perspectives, 122(9):970-976. https://doi.org/10.1289/ehp.1306566
  2. Ahmed, K., Sachindra, D.A., Shahid, S., Iqbal, Z., Nawaz, N. and Khan, N., 2020. Multimodel ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236, p.104806. https://doi.org/10.1016/j.atmosres.2019.104806
  3. Beckerman, B., Jerrett, M., Brook, J.R., Verma, D.K., Arain, M.A. and Finkelstein, M.M., 2008. Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. Atmospheric Environment, 42(2):275-290. https://doi.org/10.1016/j.atmosenv.2007.09.042
  4. Belgiu, M. and Dragut, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114:24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  5. Berman, J.D., Breysse, P.N., White, R.H., Waugh, D.W. and Curriero, F.C., 2015. Evaluating methods for spatial mapping: Applications for estimating ozone concentrations across the contiguous United States. Environmental Technology & Innovation, 3:1-10. https://doi.org/10.1016/j.eti.2014.10.003
  6. Boardman, M. and Trappenberg, T., 2006, July. A heuristic for free parameter optimization with support vector machines. In the 2006 IEEE international joint conference on neural network proceedings(pp.610-617). IEEE.
  7. Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksma, E.J., Van Der A, R.J., Sneep, M.V., Van Den Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason, J.F. and Bucsela, E.J., 2007. Near-real time retrieval of tropospheric NO 2 from OMI. Atmospheric Chemistry and Physics, 7(8):2103-2118. https://doi.org/10.5194/acp-7-2103-2007
  8. Bozdag, A., Dokuz, Y. and Gokcek, O.B., 2020. Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey. Environmental Pollution, 263, p.114635. https://doi.org/10.1016/j.envpol.2020.114635
  9. Breiman, L., 2001. Random forests. Machine learning, 45(1):5-32. https://doi.org/10.1023/A:1010933404324
  10. Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G. and Loreto, F., 2013. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environmental pollution, 183:71-80. https://doi.org/10.1016/j.envpol.2013.03.012
  11. Chelani, A.B., 2010. Prediction of daily maximum ground ozone concentration using support vector machine. Environmental monitoring and assessment, 162(1):169-176. https://doi.org/10.1007/s10661-009-0785-0
  12. Chen, J., Yin, J., Zang, L., Zhang, T. and Zhao, M., 2019. Stacking machine learning model for estimating hourly PM2. 5 in China based on Himawari 8 aerosol optical depth data. Science of The Total Environment, 697, p.134021. https://doi.org/10.1016/j.scitotenv.2019.134021
  13. Cho, D., Yoo, C., Im, J., Lee, Y. and Lee, J., 2020. Improvement of spatial interpolation accuracy of daily maximum air temperature in urban areas using a stacking ensemble technique. GIScience & Remote Sensing, 57(5):633-649. https://doi.org/10.1080/15481603.2020.1766768
  14. Choi, H., Kang, Y., Im, J., Park, S., Shin, M. and Kim, S.M., 2020. Monitoring Ground -level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (최현영, 강유진, 임정호, 신민소, 박서희, 김상민, 2020. 위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정. 대한원격탐사학회지, 36(5):1053-1066.). https://doi.org/10.7780/kjrs.2020.36.5.3.5
  15. Choi, H., Kang, Y. and Im, J., 2021. Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia. Korean Journal of Remote Sensing, 37(2):275-290 (최현영, 강유진, 임정호, 2021. 기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정. 대한원격탐사학회지, 37(2):275-290). https://doi.org/10.7780/KJRS.2021.37.2.8
  16. Eldeiry, A.A. and Garcia, L.A., 2010. Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images. Journal of Irrigation and Drainage Engineering, 136(6):355-364. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000208
  17. Feng, L., Li, Y., Wang, Y. and Du, Q., 2020. Estimating hourly and continuous ground-level PM2. 5 concentrations using an ensemble learning algorithm: The STstacking model. Atmospheric environment, 223, p.117242. https://doi.org/10.1016/j.atmosenv.2019.117242
  18. Fernandes, A.P., Riffler, M., Ferreira, J., Wunderle, S., Borrego, C. and Tchepel, O., 2019. Spatial analysis of aerosol optical depth obtained by air quality modelling and SEVIRI satellite observations over Portugal. Atmospheric Pollution Research, 10(1):234-243. https://doi.org/10.1016/j.apr.2018.07.011
  19. Fleming, Z.L., Doherty, R.M., Von Schneidemesser, E., Malley, C.S., Cooper, O.R., Pinto, J.P., Colette, A., Xu, X., Simpson, D., Schultz, M.G. and Lefohn, A.S., 2018. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elementa: Science of the Anthropocene, 6.
  20. Fraczek, W., Bytnerowicz, A. and Arbaugh, M.J., 2001. Application of the ESRI Geostatistical Analyst for determining the adequacy and sample size requirements of ozone distribution models in the Carpathian and Sierra Nevada Mountains. TheScientificWorldJOURNAL, 1:836-854.
  21. Garcia-Papani, F., Leiva, V., Ruggeri, F. and Uribe-Opazo, M.A., 2018. Kriging with external drift in a Birnbaum-Saunders geostatistical model. Stochastic Environmental Research and Risk Assessment, 32(6):1517-1530. https://doi.org/10.1007/s00477-018-1546-9
  22. Giraldo, R., Herrera, L. and Leiva, V., 2020. Cokriging prediction using as secondary variable a functional random field with application in environmental pollution. Mathematics, 8(8):1305. https://doi.org/10.3390/math8081305
  23. Graler, B., Rehr, M., Gerharz, L. and Pebesma, E., 2012. Spatio-temporal analysis and interpolation of PM10 measurements in Europe for 2009. ETC/ACM Technical Paper, 8:1-29.
  24. Gong, B. and Ordieres-Mere, J., 2016. Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Environmental Modelling & Software, 84:290-303. https://doi.org/10.1016/j.envsoft.2016.06.020
  25. Han, X., Liu, Y., Gao, H., Ma, J., Mao, X., Wang, Y. and Ma, X., 2017. Forecasting PM2. 5 induced male lung cancer morbidity in China using satellite retrieved PM2. 5 and spatial analysis. Science of the Total Environment, 607:1009-1017. https://doi.org/10.1016/j.scitotenv.2017.07.061
  26. Han, L., Zhao, J., Gao, Y. and Gu, Z., 2022. Prediction and evaluation of spatial distributions of ozone and urban heat island using a machine learning modified land use regression method. Sustainable Cities and Society, 78, p.103643. https://doi.org/10.1016/j.scs.2021.103643
  27. Hengl, T., 2006. Finding the right pixel size. Computers & geosciences, 32(9):1283-1298. https://doi.org/10.1016/j.cageo.2005.11.008
  28. Hu, X., Belle, J.H., Meng, X., Wildani, A., Waller, L.A., Strickland, M.J. and Liu, Y., 2017. Estimating PM2. 5 concentrations in the conterminous United States using the random forest approach. Environmental science & technology, 51(12):6936-6944. https://doi.org/10.1021/acs.est.7b01210
  29. Jeon, W.B., Lee, S.H., Lee, H., Park, C., Kim, D.H. and Park, S.Y., 2014. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmospheric Environment, 89:10-21. https://doi.org/10.1016/j.atmosenv.2014.02.005
  30. Jung, M.C., Park, J. and Kim, S., 2019. Spatial relationships between urban structures and air pollution in Korea. Sustainability, 11(2):476. https://doi.org/10.3390/su11020476
  31. Kang, J.E., Yoon, D.K. and Bae, H.J., 2019a. Evaluating the effect of compact urban form on air quality in Korea. Environment and Planning B: Urban Analytics and City Science, 46(1):179-200. https://doi.org/10.1177/2399808317705880
  32. Kang, Y.H., Kim, Y.K., Hwang, M.K., Jeong, J.H., Kim, H. and Kang, M.S., 2019b. Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area. Journal of Environmental Science International, 28(2):169-182. https://doi.org/10.5322/JESI.2019.28.2.169
  33. Kang, E., Yoo, C., Shin, Y., Cho, D. and Im, J., 2021a. Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (강은진, 유철희, 신예지, 조동진, 임정호, 2021a. 서울 지역지상 NO2 농도 공간 분포 분석을 위한 회귀모델 및 기계학습 기법 비교. 대한원격탐사학회지, 37(6):1739-1756.). https://doi.org/10.7780/KJRS.2021.37.6.1.21
  34. Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C.K. and Kim, S., 2021b. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environmental Pollution, 288, p.117711. https://doi.org/10.1016/j.envpol.2021.117711
  35. Kang, Y., Kim, M., Kang, E., Cho, D. and Im, J., 2022. Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS Journal of Photogrammetry and Remote Sensing, 183:253-268. https://doi.org/10.1016/j.isprsjprs.2021.11.016
  36. Kasparoglu, S., Incecik, S. and Topcu, S., 2018. Spatial and temporal variation of O3, NO and NO2 concentrations at rural and urban sites in Marmara Region of Turkey. Atmospheric Pollution Research, 9(6):1009-1020. https://doi.org/10.1016/j.apr.2018.03.005
  37. Kim, Y., Moon, Y., Oh, I. and Hwang, M., 2002. Temperature and Local Wind Flow Influencing Surface Ozone Enhancement in Seoul and Busan, Korea. Korea Meteorological Society, 38(4):319-331 (김유근, 문윤섭, 오인보, 황미경. 2002. 서울 및 부산지역에서 기온과 국지풍이 지표 고농도 오존 발생에 미치는 영향. 한국기상학회지, 38(4):319-331).
  38. Kim, K.J., Kim, J.C. and Lim, J.H., 2005. Comparison of Anthropogenic and Natural VOC concentrations in the forest ambient air. Journal of the Korean Society for Environmental Analysis, 8(3):11-13 (김기준, 김조천, 임준호, 2005. 산림대기중 인위적 VOCs 와 자연적 VOCs 의 농도 비교 연구. 환경분석학회지, 8(3):132-136.).
  39. Kim, K.N., Lim, Y.H., Bae, S., Song, I.G., Kim, S., and Hong, Y.C., 2022. Agespecific effects of ozone on pneumonia in Korean children and adolescents: a nationwide time-series study. Epidemiology and health, 44.
  40. Kim, Y. and Guldmann, J.M., 2011. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea. Atmospheric Environment, 45(16):2803-2810. https://doi.org/10.1016/j.atmosenv.2011.02.050
  41. Kim, S.Y., Yi, S.J., Eum, Y.S., Choi, H.J., Shin, H., Ryou, H.G. and Kim, H., 2014. Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities. Environmental health and toxicology, 29.
  42. Kim, S., Jeong, D., Sanchez, D., Wang, M., Seco, R., Blake, D., Meinardi, S., Barletta, B., Hughes, S., Jung, J. and Kim, D., 2018. The controlling factors of photochemical ozone production in Seoul, south Korea. Aerosol and Air Quality Research, 18(9):2253-2261. https://doi.org/10.4209/aaqr.2017.11.0452
  43. Kim, H.C., Lee, D., Ngan, F., Kim, B.U., Kim, S., Bae, C. and Yoon, J.H., 2021. Synoptic weather and surface ozone concentration in South Korea. Atmospheric Environment, 244, p.117985. https://doi.org/10.1016/j.atmosenv.2020.117985
  44. Kim, K.N., Lim, Y.H., Bae, S., Song, I.G., Kim, S., and Hong, Y.C., 2022. Agespecific effects of ozone on pneumonia in Korean children and adolescents: a nationwide time-series study. Epidemiology and health, 44.
  45. Latif, M.T., Huey, L.S. and Juneng, L., 2012. Variations of surface ozone concentration across the Klang Valley, Malaysia. Atmospheric environment, 61:434-445. https://doi.org/10.1016/j.atmosenv.2012.07.062
  46. Le, N.D. and Zidek, J.V., 2006. Statistical analysis of environmental space-time processes (p.11). New York: Springer.
  47. Lee, H.J. and Koutrakis, P., 2014. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression. Environmental science & technology, 48(4):2305-2311 https://doi.org/10.1021/es404845f
  48. Lee, J. H., IM, J. H., Kim, K. M., and Heo, J. 2015. Change Analysis of aboveground forest carbon stocks according to the land cover change using multi-temporal Landsat TM images and machine learning algorithms. Journal of the Korean Association of Geographic Information Studies, 18(4): 81-99 (이정희, 임정호, 김경민, 허준. 2015. 다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석. 한국지리정보학회지, 18(4):81-99). https://doi.org/10.11108/KAGIS.2015.18.4.081
  49. Lee, S., Han, H., Im, J., Jang, E. and Lee, M.I., 2017. Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data. Atmospheric Measurement Techniques, 10(5):1859-1874. https://doi.org/10.5194/amt-10-1859-2017
  50. Lee, H.S. and Jeong, J.C., 2020. Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image. Journal of the Korean Association of Geographic Information Studies, 23(4):52-67 (이승민, 정종철. 2020. 랜덤포레스트와 Sentinel-2 를 이용한식생 분류의 입력 특성 최적화. 한국지리정보학회지, 23(4):52-67.). https://doi.org/10.11108/KAGIS.2020.23.4.052
  51. Lee, H.M. and Park, R.J., 2022. Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environmental Pollution, 308:119645. https://doi.org/10.1016/j.envpol.2022.119645
  52. Li, J. and Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3-4):228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003
  53. Li, R., Cui, L., Hongbo, F., Li, J., Zhao, Y. and Chen, J., 2020. Satellite-based estimation of full-coverage ozone(O3) concentration and health effect assessment across Hainan Island. Journal of Cleaner Production, 244, p.118773. https://doi.org/10.1016/j.jclepro.2019.118773
  54. Lu, X., Hong, J., Zhang, L., Cooper, O.R., Schultz, M.G., Xu, X., Wang, T., Gao, M., Zhao, Y. and Zhang, Y., 2018. Severe surface ozone pollution in China: a global perspective. Environmental Science & Technology Letters, 5(8):487-494. https://doi.org/10.1021/acs.estlett.8b00366
  55. Madhvi, R., Mittal, S.K. and Gufran, B., 2021. Assessment and prediction of surface ozone in Northwest Indo-Gangetic Plains using ensemble approach. Environment, Development and Sustainability, 23(4):5715-5738. https://doi.org/10.1007/s10668-020-00841-8
  56. Michael, R., O'Lenick, C.R., Monaghan, A., Wilhelmi, O., Wiedinmyer, C., Hayden, M. and Estes, M., 2019. Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in Houston, Texas. Journal of Exposure Science & Environmental Epidemiology, 29(6):806-820. https://doi.org/10.1038/s41370-018-0091-4
  57. Oh, I., Kim, Y. and Hwang, M., 2004. Effects of Late Sea-breeze on Ozone Distributions in the Coastal Urban Area. Journal of Korean Society for Atmospheric Environment, 20(3):345-360 (오인보, 김유근, 황미경. 2004. 연안도시지역 해풍지연이 오존분포에 미치는 영향. 한국대기환경학회지, 20(3):345-360.).
  58. Park, J. C., and Kim, M. K., 2013. Comparison of precipitation distributions n precipitation data sets representing 1km spatial resolution over South Korea produced by PRISM, IDW, and cokriging. Journal of the Korean Association of Geographic Information Studies, 16(3):147-163 (박종철, 김만규. 2013. PRISM, 역거리가중법, 공동크리깅으로 작성한 1km 공간해상도의 남한 강수 자료에서 강수 분포의 비교. 한국지리정보학회지, 16(3):147-163). https://doi.org/10.11108/KAGIS.2013.16.3.147
  59. Park, S., Kim, M. and Im, J., 2021. Estimation of Ground-level PM 10 and PM 2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data. Korean Journal of Remote Sensing, 37(2):321-335 (박서희, 김미애, 임정호, 2021. 부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출. 대한원격탐사학회지, 37(2):321-335.). https://doi.org/10.7780/KJRS.2021.37.2.11
  60. Park, S., Im, J., Kim, J. and Kim, S.M., 2022. Geostationary satellite-derived ground-level particulate matter concentrations using real -time machine learning in Northeast Asia. Environmental Pollution, 306, p.119425. https://doi.org/10.1016/j.envpol.2022.119425
  61. Pernia-Espinoza, A., Fernandez-Ceniceros, J., Antonanzas, J., Urraca, R. and Martinez-de-Pison, F.J., 2018. Stacking ensemble with parsimonious base models to improve generalization capability in the characterization of steel bolted components. Applied Soft Computing, 70:737-750. https://doi.org/10.1016/j.asoc.2018.06.005
  62. Qin, K., Rao, L., Xu, J., Bai, Y., Zou, J., Hao, N., Li, S. and Yu, C., 2017. Estimating ground level NO2 concentrations over Central-Eastern China using a satellitebased geographically and temporally weighted regression model. Remote Sensing, 9(9):950. https://doi.org/10.3390/rs9090950
  63. Ramos, Y., Requia, W.J., St-Onge, B., Blanchet, J.P., Kestens, Y. and Smargiassi, A., 2018. Spatial modeling of daily concentrations of ground-level ozone in Montreal, Canada: A comparison of geostatistical approaches. Environmental research, 166:487-496. https://doi.org/10.1016/j.envres.2018.06.036
  64. Ren, X., Mi, Z. and Georgopoulos, P.G., 2020. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environment international, 142, p.105827. https://doi.org/10.1016/j.envint.2020.105827
  65. Seo, J., Youn, D., Kim, J.Y. and Lee, H., 2014. Extensive spatiotemporal analyses of surface ozone and related meteorological variables in South Korea for the period 1999-2010. Atmospheric Chemistry and Physics, 14(12):6395-6415. https://doi.org/10.5194/acp-14-6395-2014
  66. Shin, H.J., Cho, K.M., Han, J.S. and Kim, J.S., 2012. The effects of precursor emission and background concentration changes on the surface ozone concentration over Korea. Aerosol and Air Quality Research, 12(1):93-103. https://doi.org/10.4209/aaqr.2011.09.0141
  67. Shin, H.J., Park, J.H., Park, J.S., Song, I.H., Park, S.M., Roh, S.A., Son, J.S. and Hong, Y.D., 2017. The long term trends of tropospheric ozone in major regions in Korea. Asian Journal of Atmospheric Environment, 11(4):235-253. https://doi.org/10.5572/ajae.2017.11.4.235
  68. Shin, D., Song, S., Ryoo, S.B. and Lee, S.S., 2020. Variations in ozone concentration over the mid-latitude region revealed by ozonesonde observations in Pohang, South Korea. Atmosphere, 11(7):746. https://doi.org/10.3390/atmos11070746
  69. Shtein, A., Kloog, I., Schwartz, J., Silibello, C., Michelozzi, P., Gariazzo, C., Viegi, G., Forastiere, F., Karnieli, A., Just, A.C. and Stafoggia, M., 2019. Estimating daily PM2. 5 and PM10 over Italy using an ensemble model. Environmental Science & Technology, 54(1):120-128.
  70. Shukla, K., Kumar, P., Mann, G.S. and Khare, M., 2020. Mapping spatial distribution of particulate matter using Kriging and Inverse Distance Weighting at supersites of megacity Delhi. Sustainable cities and society, 54, p.101997. https://doi.org/10.1016/j.scs.2019.101997
  71. Sicard, P., De Marco, A., Troussier, F., Renou, C., Vas, N. and Paoletti, E., 2013. Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 79, pp.705-715. https://doi.org/10.1016/j.atmosenv.2013.07.042
  72. Stafoggia, M., Schwartz, J., Badaloni, C., Bellander, T., Alessandrini, E., Cattani, G., De'Donato, F., Gaeta, A., Leone, G., Lyapustin, A. and Sorek-Hamer, M., 2017. Estimation of daily PM10 concentrations in Italy(2006-2012) using finely resolved satellite data, land use variables and meteorology. Environment international, 99, pp.234-244. https://doi.org/10.1016/j.envint.2016.11.024
  73. Sun, W. and Li, Z., 2020. Hourly PM2. 5 concentration forecasting based on feature extraction and stacking-driven ensemble model for the winter of the BeijingTianjin-Hebei area. Atmospheric Pollution Research, 11(6):110-121. https://doi.org/10.1016/j.apr.2020.02.022
  74. Wang, T., Xue, L., Brimblecombe, P., Lam, Y.F., Li, L. and Zhang, L., 2017. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575:1582-1596. https://doi.org/10.1016/j.scitotenv.2016.10.081
  75. Watson, G.L., Telesca, D., Reid, C.E., Pfister, G.G. and Jerrett, M., 2019. Machine learning models accurately predict ozone exposure during wildfire events. Environmental Pollution,s 254, p.112792. https://doi.org/10.1016/j.envpol.2019.06.088
  76. Wolpert, D.H., 1992. Stacked generalization. Neural networks, 5(2):241-259. https://doi.org/10.1016/S0893-6080(05)80023-1
  77. World Health Organization, 2006. Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.
  78. World Health Organization, 2021. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
  79. Xia, N., Du, E., Guo, Z. and de Vries, W., 2021. The diurnal cycle of summer tropospheric ozone concentrations across Chinese cities: Spatial patterns and main drivers. Environmental Pollution, 286, p.117547. https://doi.org/10.1016/j.envpol.2021.117547
  80. Yarragunta, Y., Srivastava, S., Mitra, D. and Chandola, H.C., 2020. Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India. GIScience & Remote Sensing, 57(2):190-206. https://doi.org/10.1080/15481603.2020.1712100
  81. Yeo, M.J. and Kim, Y.P., 2021. Long-term trends of surface ozone in Korea. Journal of Cleaner Production, 294, p.125352 https://doi.org/10.1016/j.jclepro.2020.125352
  82. Young, M.T., Bechle, M.J., Sampson, P.D., Szpiro, A.A., Marshall, J.D., Sheppard, L. and Kaufman, J.D., 2016. Satellite-based NO2 and model validation in a national prediction model based on universal kriging and land-use regression. Environmental science & technology, 50(7):3686-3694. https://doi.org/10.1021/acs.est.5b05099
  83. Zang, Z., Guo, Y., Jiang, Y., Zuo, C., Li, D., Shi, W. and Yan, X., 2021. Tree-based ensemble deep learning model for spatiotemporal surface ozone(O3) prediction and interpretation. International Journal of Applied Earth Observation and Geoinformation, 103, p.102516. https://doi.org/10.1016/j.jag.2021.102516
  84. Zhai, B. and Chen, J., 2018. Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China. Science of The Total Environment, 635:644-658. https://doi.org/10.1016/j.scitotenv.2018.04.040
  85. Zhang, J., Xu, J., Dai, X., Ruan, H., Liu, X. and Jing, W., 2022. Multi-Source Precipitation Data Merging for Heavy Rainfall Events Based on Cokriging and Machine Learning Methods. Remote Sensing, 14(7):1750 https://doi.org/10.3390/rs14071750
  86. Zhu, X., Ma, Z., Li, Z., Wu, J., Guo, H., Yin, X., Ma, X. and Qiao, L., 2020. Impacts of meteorological conditions on nocturnal surface ozone enhancement during the summertime in Beijing. Atmospheric Environment, 225, p.117368. https://doi.org/10.1016/j.atmosenv.2020.117368