• Title/Summary/Keyword: rDNA ITS sequencing

Search Result 130, Processing Time 0.029 seconds

Identification of Botrytis cinerea, the Cause of Post-Harvest Gray Mold on Broccoli in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Hong, Sae-Jin;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.372-378
    • /
    • 2017
  • In this study, we identified the causative agent of post-harvest gray mold on broccoli that was stored on a farmers' cooperative in Pyeongchang, Gangwon Province, South Korea, in September 2016. The incidence of gray mold on broccoli was 10-30% after 3-5 weeks of storage at $3^{\circ}C$. Symptoms included brownish curd and gray-to-dark mycelia with abundant conidia on the infected broccoli curds. The fungus was isolated from infected fruit and cultured on potato dextrose agar. To identify the fungus, we examined the morphological characteristics and sequenced the rDNA of the fungus and confirmed its pathogenicity according to Koch's postulates. The results of the morphological examination, pathogenicity test, and sequencing of the 5.8S rDNA of the internal transcribed spacer regions (ITS1 and ITS4) and three nuclear protein-coding genes, G3PDH, HSP60, and RPB2, revealed that the causal agent of the post-harvest gray mold on broccoli was Botrytis cinerea. To our knowledge, this is the first report of post-harvest gray mold on broccoli in Korea.

First Report of Gray Mold Disease of Sweet Basil (Ocimum basilicum) Caused by Botrytis cinerea in Korea

  • Aktaruzzaman, Md.;Kim, Joon-Young;Afroz, Tania;Hong, Sae-Jin;Kim, Byung-Sup
    • The Korean Journal of Mycology
    • /
    • v.43 no.4
    • /
    • pp.277-280
    • /
    • 2015
  • In August 2015, we collected samples of gray mold from sweet basil growing in Sachunmeon, Gangneung, Gangwon Province, Korea. Symptoms included extensive growth of mycelia with gray conidia on young leaves, stems, and blossoms. The pathogen was isolated from infected leaves and blossoms and the fungus was cultured on potato dextrose agar. For identification of the fungus, morphology and rDNA sequencing analysis of the fungus were performed, which confirmed its pathogenicity according to Koch's postulates. The results of morphological examinations, pathogenicity tests, and the rDNA sequences of the internal transcribed spacer regions (ITS1 and ITS4) and the three nuclear protein-coding genes G3PDH, HSP60, and RPB2 showed that the causal agent was Botrytis cinerea. This is the first report of gray mold caused by Botrytis cinerea on sweet basil in Korea.

Promoter demethylation mediates the expression of ZNF645, a novel cancer/testis gene

  • Bai, Gang;Liu, Yunqiang;Zhang, Hao;Su, Dan;Tao, Dachang;Yang, Yuan;Ma, Yongxin;Zhang, Sizhong
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.400-406
    • /
    • 2010
  • Cancer/testis (CT) antigens exhibit highly tissue-restricted expression and are considered promising targets for cancer vaccines. Here we identified a novel CT gene ZNF645 which restrictively expresses in normal human testes and lung cancer patients (68.3%). To investigate the promoter methylation status of ZNF645, we carried out bisulfite genomic sequencing and found that the CpG island in its promoter was heavily methylated in normal lung tissues without the expression of ZNF645, whereas there was high demethylation in normal human testes and lung carcinoma tissues with its expression. Also ZNF645 could be remarkably activated in A549 and HEK293T cells treated by DNA demethylation agent 5'-aza-2'-deoxycytidine. And the dual luciferase assay revealed that the promoter activity of the ZNF645 was inhibited by methylation of the CpG island region. Therefore, we proposed that ZNF645 is a CT gene and activated in human testis and lung cancers by demethylation of its promoter region.

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

The Incidence of Alternaria Species Associated with Infected Sesamum indicum L. Seeds from Fields of the Punjab, Pakistan

  • Nayyar, Brian Gagosh;Woodward, Steve;Mur, Luis A.J.;Akram, Abida;Arshad, Muhammad;Naqvi, S.M. Saqlan;Akhund, Shaista
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.543-553
    • /
    • 2017
  • Sesame (Sesamum indicum) is an important oil seed crop of Asia. Yields can be negatively impacted by various factors, including disease, particularly those caused by fungi which create problems in both production and storage. Foliar diseases of sesame such as Alternaria leaf blight may cause significant yield losses, with reductions in plant health and seed quality. The work reported here determined the incidence of Alternaria species infecting sesame seeds grown in the Punjab, Pakistan. A total of 428 Alternaria isolates were obtained from 105 seed samples and grouped into 36 distinct taxonomic groups based on growth pattern and morphological characters. Isolation frequency and relative density of surface sterilized and non-surface sterilized seeds showed that three isolates (A13, A47 and A215) were the most common morphological groups present. These isolates were further identified using sequencing of the Internal Transcribed Spacer (ITS) region of ribosomal DNA (rDNA) and the Alternaria major allergen gene (Alt a 1). Whilst ITS of rDNA did not resolve the isolates into Alternaria species, the Alt a 1 sequences exhibited > 99% homology with Alternaria alternata (KP123850.1) in GenBank accessions. The pathogenicity and virulence of these isolates of Alternaria alternata was confirmed in inoculations of sesame plants resulting in typical symptoms of leaf blight disease. This work confirms the identity of a major source of sesame leaf blight in Pakistan which will aid in formulating effective disease management strategies.

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos

  • Hyeonji Lee;Dong Wook Han;Seonho Yoo;Ohbeom Kwon;Hyeonwoo La;Chanhyeok Park;Heeji Lee;Kiye Kang;Sang Jun Uhm;Hyuk Song;Jeong Tae Do;Youngsok Choi;Kwonho Hong
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1021-1030
    • /
    • 2024
  • Objective: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. Methods: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. Results: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. Conclusion: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.

Investigation of Ectomycorrhizal Fungal Colonization in Pinus thunbergii Seedlings at a Plantation Area in Gangneung, using Morphotyping and Sequencing the rDNA Internal Transcribed Spacer Region

  • Obase, Keisuke;Cha, Joo-Young;Lee, Jong-Kyu;Lee, Sang-Yong;Lee, Jin-Ho;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • The status of ectomycorrhizal (ECM) fungal colonization in Pinus thunbergii seedlings was investigated 2 years after planting in an eastern coastal area of Korea. We established three $10{\times}10$ m plots at a P. thunbergii plantation in Gangneung and sampled lateral roots from 10 seedlings in each plot. ECMs were classified into morphological groups and the number of root tips of each morphotype was counted. In total, 8 ECM morphotypes were observed and fungal species that form each morphotype were identified by sequencing of the internal transcribed spacer (ITS) region of the nuclear rDNA. Suillus granulatus was the most abundant species (44.1-65.7% of relative abundance) in all plots, followed by Tomentella ellisii (14.0-37.8%) and unidentified fungus belonged to Atheliaceae (10.6-20.1%). These 3 fungal species accounted for almost all of the ECM abundance in each plot (94.9-99.8%). The remaining 5 fungal species were uncommon and rare. There was no clear difference in ECM fungal communities among plots. Community structure of ECM fungi in the young P. thunbergii plantation was simple and composed of fungal species that were also observed in mature coastal pine forests.

Halo Blight of Kudzu Vine Caused by Pseudomonas syringae pv. phaseolicola in Korea

  • Jeon, Yong-Ho;Chang, Sung-Pae;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • Kudzu vine(Pueraria montana var. lobata) is an invasive climbing woody vine that envelops trees and shrubs, pressing physically and shutting out sunlight, which needs to be controlled. Kudzu vine pathogens were surveyed as a way to seek its biocontrol agents in 2002. Occurrence of a bacterial halo blight disease of kudzu vine was observed at several localities in Korea including Euiwang and Suwon in Gyeonggi Province, Daejon, and Gochang and Buan in Jeonbuk Province. Symptoms of brown to black spots with a surrounding yellowish halo appeared from June and lasted till the rainy season without much expansion, but accompanying often leaf blight and defoliation. Isolated bacteria were identified as Pseudomonas syringae pv. phaseolicola based on physiological and cultural characteristics, Biolog, fatty acid and 16S rDNA sequencing analyses. In artificial inoculation test, these bacteria produced the same halo spot symptoms on kudzu vine and bean plants. They also induced hypersensitive responses (HR) on tobacco, tomato, and chili pepper leaves. This is the first report of a bacterial disease of kudzu vine in Korea, and the bacterial pathogen can be used as a biocontrol agent against the pest plant.

Genotyping of avian pathogenic Escherichia coli by DNA fragment analysis for the differences in simple sequence repeats

  • Han, Mi Na;Byeon, Hyeon Seop;Han, Seong Tae;Jang, Rae Hoon;Kim, Chang Seop;Choi, Seok Hwa
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.257-262
    • /
    • 2018
  • Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry farms, due to systemic infections leading to lethal colisepticemia. It causes a variety of diseases from air sac infection to systemic spread leading to septicemia. Secondary infection contains opportunistic infections due to immunosuppression disease. Collibacillosis causes the great problems in the poultry industry in Korea. Thus, it is necessary to identify and classify the characteristics of E. coli isolate of chicken origin to confirm the diversity of symptoms and whether they are transmitted among the farms. Fragment analysis is identify the difference in the number of Variable-Number Tandem-Repeats (VNTRs) for genotyping. VNTRs have repeating structure (Microsatellite, Short tandem repeats; STR, Simple sequence repeats; SSR) in the chromosome. This region can be used as a genetic marker because of its high mutation rate. And various lengths of the amplified DNA fragment cause the difference in the number of repetition of the DNA specific site. The number of repetition sequences indicates the separated size of fragments, so the each fragments can be distinguished by specific samples. The results of the sample show that there is no difference in six microsatellite loci (yjiD, aidB, molR_1, ftsZ, b1668, yibA). There are differences among the farms in relation of the number of repetitions of other six microsatellite loci (ycgW, yaiN, yiaB, mhpR, b0829, caiF). Four (ycgW, yiaB, b0829, caiF) of these six microsatellite loci show statistically significant differences (P<0.05). It means that the analysis using four microsatellite loci including ycgW, yiaB, b0829, and caiF can confirm among the farms. Five E. coli samples in one farm have same SSR repetition at all markers. But, there are significant differences from other farms at Four (ycgW, yiaB, b0829, caiF) microsatellite loci. These results emphasize again that the four microsatellite loci makes a difference in the amplified DNA fragments, enabling it to be used for E. coli genotyping.